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This thesis research develops a preliminary design for a pitch-pointing maneuver
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Abstract

-'Quantitative Feedback Theory (QFT) techniques are used in the design of a

multivariablejcontrol law for the AFTI/F-16. The techniques were developed by Professor

Isaac Horowitz, University of California, Davis, California. The flight control problem

involves a multiple input - multiple output (MIMO) plant requiring regulation and control ii

the presence of parameter uncertainty and disturbances. Based on frequency response

fundamentals, the technique uses feedback to achieve closed-loop system response within

performance tolerances despite plant uncertainty. The range of uncertainty and the output

performance specifications are quantitative parameters in the design process. The MIMO

control problem is restructured into a set of two input - single output (multiple input - single

output (MISO)) problems where one input is a command input to the system and the other

is a disturbance input to be attenuated. The control laws for the MISO problems taken

together form the solution of the MIMO problem.

To obtain a point of comparison between various design techniques, the identical

aircraft model previously developed by Mr. A. Finley Barfield is used in this study. The

state space form of the model is converted to the transfer function relationships between the

plant input and output variables. A single design is performed over the range of flight

conditions investigated.

The approach used along with evaluations of the final control laws is presented.

Recommendations for further study and discussion of the results obtained are provided.

.. -N- -- " ' - ,' ¢ix
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MULTIVARIABLE FLIGHT CONTROL DESIGN

WITH PARAMETER UNCERTAINTY

FOR THE AFlI/F- 16

I. Introduction

Background

Recent advances in high performance aircraft design have increased the complexity of

thc flight control problem. Improvements in the short period and dutch roll damping

characteristics of an aircraft have been achieved by augmenting limited authority controllers

designed using existing control theory. It has also been utilized in the design of autopilots

and automatic landing systems.

Current emphasis in aircraft design incorporates control characteristics early in the

design process to improve aircraft performance. The aerodynamic design is no longer

limited by the requirement of providing stability and natural damping. Improved

maneuverability can be achieved at the expense of static stability. Thus, the control system

must provide compiete artificial stability as well as acceptable performance characteristics.

The development of digital fly-by-wire control systems on advanced high

performance aircraft gives the pilot control over aircraft motion variables. Rather than

governing control surface deflection, the stick input is used to command a desired change

in rate or acceleration. The pilot's control stick provides the desired command input to the

full authority fly-by-wire control system. The system determines the necessary signals to

deflect the control surfaces in a manner which will obtain the response desired. The

designer is able to develop a system allowing the pilot to command the aircraft response

most beneficial to a given situation. If necessary, individual controllers can be designed to

provide improved performance for specific mission phases.

Strong requirements are placed on a full authority fly-by-wire system to ensure
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reliability, durability, and safety. The flight control system must operate after a number of

failures. This requirement may result in the use of redundant channels within the flight

control system to permit failure detection and isolation. The importance of system

reliability is readily apparent when considering aircraft designs where artificial stability is

provided by the flight control system. System failure can result in aircraft loss due to the

high authority and fast response of fly-by-wire systems.

The advent of Direct Force capabilities allows entirely new maneuvers to be per-

formed by an aircraft. These Control Configured Vehicle (CCV) capabilities are obtained

through the use of multiple control surfaces coupled with the flight control system. Figure

I-1 portrays the development of direct force modes using multiple control surfaces for the

AFTI/F-16. The term direct force relates to forces which are uncoupled or disassociated

from the aircraft's rotation. A detailed description of the six new control modes derived

from the use of direct forces is given by Mr. A. Finley Barfield in Reference 2.

The CCV maneuvering capabilities along with the advances in aircraft design have

complicated the flight control design problem. The plant to be controlled consists of

multiple inputs and outputs. Conventional control methods have provided successful

multivariable designs. Unfortunately, the difficulty and time required to apply the methods

has increased. Many iterations of the design procedures are necessary to fulfi!l the various

design requirements as each feedback loop is closed.

A number of multivariable control theories have developed with varied results when

applied to the flight control problem. The frequency domain design methods developed by

Dr. Isaac Horowitz, University of California, Davis, California, have demonstrated good

results in this area. The fundamentals of Dr. Horowitz's design theory used in this thesis

are presented in Chapters II and III. For a more detailed theoretical description of the

techniques, see References 5, 8, 9, 12 and 16.

The feasibility of various modern control techniques is of primary interest to the Air

Force Institute of Technology and the Air Force Flight Dynamics Laboratory, Wright-
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Patterson Air Force Base, Ohio. The research of this thesis effort uses the identical aircraft

model, assumptions, and design requirements used in the research by Mr. Barfield (Ref 2).

The goal is to provide a basis of comparison between the methods of Dr. Isaac Horowitz,

as applied in this thesis, and that of Dr. Brian Porter applied in the thesis by Mr. Barfield.

Research Objective and Scope

The objective of this thesis research is to design and evaluate a flight controller, using

the Quantitative Feedback Theory (QFT) technique of Dr. Isaac Horowitz (Ref 8, 9, 12 and

16), for an AFTI/F-16 aircraft. The design focuses on obtaining a controller for the

longitudinal CCV maneuver of pitch pointing. The evaluation examines controller

robustness, control surface deflection, and bandwidth considerations on the loop

transmission and compensator functions acquired.

The design is performed for several flight conditions in the flight envelope. The

flight conditions considered are listed below.

1. 0.6 Mach; 30,000 Feet

2. 0.9 Mach; 20,000 Feet

3. 1.6 Mach; 30,000 Feet

The flight condition at 0.2 Mach; Sea Level investigated by Mr. Barfield is not included in

this report since air-to-air combat is being emphasized. Also, the plant transfer functions

describing this condition are non-minimum phase (have right-half-plane zeros). Analysis

of this case requires using the Optimum Blending Method or the Singular G Method of Dr.

Horowitz which was investigated by Lt. Jon Walke (Ref 15) and is beyond the scope of

this report.

A controller is considered robust when the system performance is satisfactory at flight

conditions other than the condition for which it was specifically designed. Robustness is

evaluated by using the controller design, based on a nominal plant, for a pitch pointing

maneuver. In practice, a nominal plant is chosen which exhibits similar frequency domain

1-4



characteristics as the actual plant over the range of flight conditions. The controller

obtained is then used for simulation of pitch pointing at each flight condition considered.

To reemphasize, the scope of this thesis effort uses the identical aircraft model,

assumptions, and design requirements used in the research by Mr. Barfield (Ref 2). The

design requirements are adjusted and relaxed slightly to be appropriate for the limited scope

of this study. The goal is to provide a basis of comparison between the methods of Dr.

Isaac Horowitz and Dr. Brian Porter.

Assumptions

The following basic assumptions are made to simplify the design complexity to the

level of a preliminary design. Refer to Reference 2 for a thorough description and

justification of each.

- The aircraft is a rigid body and mass is held constant.

- Thrust is not changing.

- The earth's surface is an inertial reference frame.

- The atmosphere is assumed fixed with respect to the earth.

- The equations of motion can be decoupled into a longitudinal and a

lateral-directional set of equations.

- Linearization about an operating condition is acceptable for point designs.

- Aerodynamics are fixed for Mach and altitude.

General Apjtn'ach

The basic approach for this research effort is to acquire proficiency with the QFT

method of Dr. Horowitz (Ref 5, 8, 9, 12 and 16) and apply it to the design of a

multivariable flight control system for the AFTI/F-16 aircraft. Due to the interest in CCV

control modes for improving combat performance, a controller is developed to provide

pitch pointing over the range of flight conditions considered. Pitch rate and normal
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acceleration are chosen as command outputs. The control inputs to the plant are flaperon

and elevator surface positions. The state space representation of the full equations of

motion, including actuator and sensor models, is converted to transfer function

relationships between the plant input and output variables. Plant uncertainty arises as

parameters vary with airspeed and altitude.

The QFT method, based on frequency domain fundamentals, uses feedback' to

achieve a closed-loop response within performance tolerances despite plant uncertainty.

The range of uncertainty and the output performance specifications are quantitative

parameters in the design process. The QFT method restructures the multiple input -

multiple output (MIMO) uncertainty problem into a set of equivalent two input - single

output (multiple input - single output (MISO)) uncertainty problems where one input is a

command input to the system and the other a disturbance input to be attenuated. The

control laws of the set of MISO problems taken together form the solution of the MIMO

problem.

Design Requirements

A set of general design requirements is established to guide the research. A

discussion of each requirement is given in Reference 2.

- The design will provide control and stability augmentation.

- Responses are to be fast and well behaved.

- Surface position and rate limits must not be exceeded.

- The outputs of the system will be aircraft rates and accelerations.

- Feedbacks can be reliably obtained with existing sensors.

- Conventional and specific CCV maneuver capabilities are available.

The general guidelines listed above were those used by Mr. Barfield. The additional

requirement of minimizing loop transmission and compensator bandwidth is desirable to

avoid unwanted effects from structural interaction, typically represented as noise.
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To reduce the scope of this study, only the CCV maneuver of pitch pointing is

addressed. The control surface position and rate responses are presented in the results.

The responses are compared to the aircraft position and rate limits. However, no attempt is

made to incorporate these limits in the design process. Such limits can be included as

design parameters using a secondary approach described by Dr. Horowitz in Reference 14.

Sequence of Presentation

The presentation of this research effort is organized as follows. Chapters II and m

briefly describe the Quantitative Feedback Theory developed by Dr. Isaac Horowitz of the

University of California, Davis, California. The fundamentals required to solve the single

loop uncertainty problem are given in Chapter II. These fundamentals are used in the

multiple input - multiple output design procedure described in Chapter M. These two

chapters were written in cooperation with Capt. Robert Betzold (Ref 3). A description of

the aircraft chosen for the thesis is provided in Chapter IV, along with the state space model

used to derive the plant transfer function matrix. The application of the design technique is

presented in Chapter V. Representative results obtained at intermediate points in the design

process are given. The final results are presented in Chapter VI. Conclusions and

recommendations for further study are stated in Chapter VII.
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II. Multiple Input - Single Output Design Theory

Introduction

Chapters H and III present an overview of the Quantitative Feedback Theory (QFT)

technique used in the design of multiple input - multiple output (MIMO) flight control

systems for this thesis. Examples are presented to aid in the understanding of the material.

The technique is valid for the general n-by-n case. However, for simplicity, the examples

below are either single loop or two-by-two systems. See References 9 and 16 in the biblio-

graphy for a discussion of the three-by-three case and extrapolation to the general case.

The flight control problem involves a multiple input - multiple output plant requiring

regulation and control due to parameter uncertainty and disturbances. The mathematical

equations describing the motion of an aircraft are highly non-linear. For design purposes,

these equations are linearized about a point in the flight envelope, or flight condition.

Uncertainty arises as the linearized coefficients vary with airspeed and altitude.

The QFT technique developed by Dr. Isaac Horowitz uses feedback to achieve a

closed-loop system response within performance tolerances despite plant uncertainty. The

range of plant uncertainty and the output performance specifications are quantitative

parameters in the design process (Ref 9:81). The fundamentals of the design method are

presented in the discussion of the two input - single output design problem of Chapter II.

The multiple input - multiple output design procedure is described in Chapter III, using the

fundamentals developed in Chapter II.

Problem Definition

The general multiple input - single output (MISO) problem involves a plant transfer

function, P, with uncertain parameters (gain, poles, and zeros) known only to be members

of finite sets. The design specifications dictate the desired response of the plant to inputs

and/or disturbances. The problem is to obtain a contr er forcing the plant output to satisfy
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performance tolerances over the range of plant uncertainty.

The basic MISO control loop structure is shown in Figure 1-1.

d(t)

00r( t) 0 >O > 0 > y(t)

-1

Fig. 1-1. Two Degree-of-Freedom MISO Feedback Structure

In the figure, r(t) is the command input to the system and d(t) is a disturbance input to be

attenuated. P is the plant transfer function whose characteristics are not precisely known.

The compensator, G, and the prefilter, F, are designed to force the system output, y(t), to

be a member of a set of acceptable responses despite the uncertainty in P and the

disturbance input, d(t). The plant input signal, x(t), is identified since it is generally of

interest due to physical or practical constraints. The signals r(t) and y(t) are assumed

measurable quantities and the latter is available for feedback. Access to both signals allows

the use of the two degree-of-freedom structure of Figure I-1 and provides the designer

with two independent compensator elements, F and G (Ref 10:13). It is also assumed r(t),

y(t), and (for now) the plant, P, where y(t) = Px(t), are all Laplace transformable functions

(Ref 10:8).

There are four transfer functions of interest from Figure II-1. The overall system

transfer functions TR and TD are the control ratios of the output y(t) to the inputs r(t) and

d(t) respectively, i.e.,
Y FGP

TR - - (11-1)
R 1 +GP

Y 1
TD - - (11-2)

D 1 +GP
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The loop transmission L is defined as L = GP for the system in Figure 1-1. The control

ratios in terms of L are written as follows:

Y FL
TR =-- (11-3)

R I+L

Y I
TD = - = - (H-4)

D I+L

The transfer functions describing the plant input x(t) to the command and disturbance

inputs are shown below.
X FG FG

IR .-- - - (11-5)
R 1 +GP I+L

X -G -G
ID = -- = (11-6)

D 1 +GP 1+L

The design specifications may impose constraints on any or all of the above transfer

functions, but for the purpose of this example, only the transfer functions TR and TD are

considered.

Design Specifications

The design specifications, or closed-loop system response tolerances, describe the

upper and lower limits for acceptable output response to a desired input or disturbance.

Any output response between the two bounds is assumed acceptable. The response

specifications must be determined prior to applying the design method. Typically, tracking

response specifications are given in the time domain, such as the figures of merit Mp, ts , tP,

and Km (Ref 5) based upon a step forcing function, or as a region bounded by TU and TL

as shown in Figure 11-2.

Response to a step input is a good initial test of system response. Bounds TU and TL

of the figure are the acceptable upper and lower limits, respectively, of a system's tracking

performance to a step input. Desired system response to a step disturbance generally
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y~t) TU

YQ).

TD

0

Fig. U-2. Time Domain Step Response Specifications

requires maintaining the output below a given value, thus only an upper bound is necessary

as shown by the curve TD in Figure 11-2. Additional similar bounds are needed if other

inputs are to be considered.

The design technique is a frequency domain approach, therefore the time domain

specifications must be translated to bounds in the frequency domain. The desired control

ratios, TMR = [Y/R]MR and TMD = [Y/DIMD , are modeled to satisfy the performance spec-

ifications using the pole-zero placement method as described in Reference 5, Sections 12.2

and 12.8. For response to a step input, a third order model with one zero is suggested.

A(s - zI) A(s - z1)TM(S) = =(11-7)(s - pi)(s - P2)(s - P3) (s2 + 2C(Ons + ((On) 2)(s - P3)

The pole-zero pattern corresponding to Equation (11-7) is shown in Figure 11-3. The

locations of the roots are adjusted until the step response of the modeled control ratio

matches a bound.
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Fig. 11-3. Third-Order Control Ratio Pole-Zero Pattern

The frequency domain characteristics of the problem are considered during the

response modeling process. It is desired to keep the magnitude difference (as a function of

frequency) between the upper and lower bound models of ITMR(O)I as large as possible

over the entire frequency range. Choosing a lower bound model with a greater pole-to-zero

ratio than the upper bound model ensures the magnitude difference continually increases

and approaches infinity in the limit as o approaches infinity.

Errors made during the modeling process manifest themselves in one of two ways.

First, if the lower acceptable response model is not truly acceptable, the system may not

meet the design specifications over the assumed range of uncertainty in P. And second, if

the entire range of allowable outputs is not considered, overdesign may arise with respect

to the variation in T. As a result, the bandwidth of the compensation can be larger than

necessary, increasing the cost of the compensator (Ref 10:5).

Once control ratios are obtained for each time response bound, a Log-magnitude plot

of the frequency response (Bode plot) for each TM(jo) is made on the same graph as

shown in Figure 11-4. These plots are a frequency domain representation of the design

specifications on TR and TD. The frequency domain specifications are used to obtain

bounds on the loop transmission L(j0). The largest value of oh, obtained in the manner
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shown in Figure 1-4, is used as the initial upper frequency bound for obtaining plant

templates (to be discussed later).

+ Lra[T] to Woth-2o

dB TU hU  mD D D

0 -41

Fig. 11-4. Frequency Domain Specifications

Nichols Chart

The primary tool used in the design of the compensator elements G and F is the

Nichols chart, shown in Figure 11-5. If the open loop transmission of a unity feedback

system (L = GP, assuming F = 1 for now, in Figure II-1) is plotted using the horizontal

and vertical scales on the chart, then at any given frequency, the magnitude and phase angle

of TR = L/(1 + L) can be read directly from the curved scales. Conversely, any point

corresponding to the magnitude and angle of TR on the curved scales provides a point

corresponding to the magnitude and angle of L on the horizontal and vertical scales (Ref

5:332.334). This correspondence between L and TR on the Nichols chart is very

important.
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Likewise, the Nichols chart can be used for the disturbance response problem. Recall

from Equation (1-4), the control ratio relating the output to the disturbance input is given

by TD = 1/(1 + L). Using the transformation, L = 1/m (Ref 1:152-155), the control ratio

becomes TD = m/(1 + m), which is suitable for the Nichols chart. One could design the

inverse of the loop transmission m directly on the Nichols chart, but it is much easier to

realize that by turning the Nichols chart upside down, reflecting the vertical angle lines of L

about the -180 degree line (i.e. -190' becomes -170', -210' becomes -150', etc.), and

reversing the signs on all magnitude lines, the chart can be used directly to design L itself.

The horizontal and vertical lines still correspond to the magnitude and angle of L, and the

curbed magnitude lines correspond to the magnitude of (1 + L) (Ref 1:155). For design

purposes, only the magnitude of (1 + L) is required. Therefore, the curved angle lines on

the chart can be ignored. In practice, the transformation L = 1/m is merely implied by

turning the Nichols chart upside down and modifying the scales as described above. The

dummy variable m need not be considered further.

Plant Templates

A plant template is a plot on the Nichols chart of the range of uncertainty in the plant

P at a given frequency (Ref 8:290). Consider the example P(s) = K/s(s+a) where the gain

K is described by: 2 < K < 8, and the location of the second pole is given by: 0.5 < a <

2.0. An infinite number of possible P's exist due to the variation in parameters K and a;

however each parameter is a member of a set with finite boundaries. Likewise, the

magnitude and phase angle of all possible P's lie within finite boundaries when plotted at a

given frequency. The plant template is obtained by plotting Lm[P(jco)] vs. Ang[P(jco)] for

all possible P(jo)'s at a given frequency on the Nichols chart. Note, only the boundaries

of the template need be calculated. The plant transfer functions at the boundaries are found

by holding one parameter constant at a boundary value, i.e. set K = 2, and vary a in

increments from 0.5 to 2.0 to obtain a set of plant transfer functions. The frequency
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response at 0 j = 1 for the P's obtained in this manner provide a set of points from A, (K =

2, a = 0.5), to D, (K = 2, a = 2), on the Nichols chart as shown in Figure 11-5. The

process is continued until the complete template is formed. For example, for a = 0.5, vary

K from 2 to 8 to obtain the line from A, (a = 0.5, K = 2), to B, (a = 0.5, K = 8).

Templates are needed for a number of frequencies taken at regular intervals, such as every

octave, up to the largest wh value. A set of templates is shown in the figure to demonstrate

the change in size and location of the range of uncertainty in P for different frequencies.

Nominal Plant

To facilitate the shaping of the loop transmission, the designer needs a reference or

nominal plant transfer function. A nominal plant P0 is chosen by the designer to be used in

the definition and shaping of the nominal loop transmission Lo = GPo. There are no rules

or constraints governing the selection of P0. The nominal plant is not required to be from

the set of possible P's, but selecting P0 to lie at a recognizable point on the plant templates

is usually convenient. For convenience in the example, P0 was selected to lie at the lower

left comer of the templates. This allows the bounds on L., described below, to be drawn

as close to the center of the Nichols chart as possible. Once the nominal plant is chosen,

the value of P0 is marked on each template, as shown in Figure 11-5. For the example, the

plant described by P0 = 2/(s + 0.5) is selected as the nominal plant.

Derivation of Bounds on L(o)

The system response y(t) is uniquely determined by the transfer function T(s).

Likewise, T(s), for a stable, minimum phase system (no right-half-plane poles or zeros), is

completely specified by the magnitude of the frequency response IT(jo) as described in

References 8 and 10. The bounds on IT(j0o)l are known by determining the frequency

domain specifications as described previously. The specifications for the IT(jo)l are

translated to bounds B(jo) on L(jo) using the correspondence between TR (TD) and L on
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the Nichols chart.

Given the design specifications for TR(jo), the frequency response of the output can

vary from the value on the bound TU to the value on the bound TL at a given frequency (see

Figure 1-4). For the given example, at the frequency cOi = 1, assume ITR(jI) can vary from

0.7 dB to -0.8 dB. The allowable relative variation &R(jl) is 0.7 dB - (-0.8) dB or 1.5 dB.

In general, the allowable relative variation in rTR(jco)I at a given frequency is expressed as:

&R(Joi) = Lm[TU(JO t)] - Lm[TL(joi)) (11-8)

where Tu(jo) and TL(jo) are the frequency domain bounds on TR(jo).

The uncertainty in the plant P is related to an uncertainty in the control ratio as

follows. Recall from Figure 11-1 and Equation (11-3), TR = FLI(I+L) where L = GP. It is

assumed that the compensators F and G can be constructed with negligible uncertainty.

Then, the uncertainty in P results in an uncertainty in the loop transmission, i.e.,

ALm[P(jcoi)] = ALm[L(jco) ]  (11-9)

since Lm[L] = Lm[GP] = Lm[G] + Lm[P] and the uncertainty in G, ALm[G], is assumed

negligible. Likewise, the uncertainty in P is related to an uncertainty in the control ratio via

Equations (11-3) and (11-9), i.e.,

L(jcoi)

ALm[T(joi)] = ALm (11-10)
I + L(j")

where Lm[T] = Lm[FL/(I+L)] = Lm[F] + Lm[L/(I+L)] and the uncertainty in F, ALm[FI,

is assumed negligible (Ref 10:15-16). The variation in P arises due to parameter

uncertainty, thus the problem is to find an L satisfying the allewable relative variation

requirements on the closed-loop response for the entire uncertainty range of P. The design

specifications state the requirements on the closed-loop response Y(jo) and thus T(jO) as

given by Equation (11-10). It is desired to obtain constraints on the loop transmission,

L(jo) (Ref 8:291, 10:18).
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L(jco) Bounds on the Nichols Chart

The relative uncertainty in L is shown to equal to the range of uncertainty in P by

Equation (11-9). As described earlier, the plant template is a plot on the Nichols chart of the

range of uncertainty in P at a given frequency. From the relations: Lm[L] = Lm[P] +

Lm[G] and Ang(L] = Ang[P] + Ang[G], a template may be translated (but not rotated)

horizontally or vertically on the Nichols chart, where horizontal and vertical translations

correspond to the angle and magnitude requirements respectively on G(jcO) at a given

frequency (Ref 8:290). Drawing a line on each of the templates parallel to the horizontal or

vertical grid lines (see Figure 11-5) of the Nichols chart is suggested to maintain correct

template orientation.

With the template corresponding to coi = 1 of Figure 11-5, translate it to position 1

shown in Figure 11-6. Since the template is the range of uncertainty in P and L = GP,

where G is to be precisely determined, it follows that the area now covered by the template

corresponds to the variation in L and T due to the uncertainty of P. Recall the

correspondence between L and T on the Nichols chart. Using the curved magnitude

contours, i.e. contours of constant Lm[T(jc)], read the maximum and minimum values of

T covered by the template. If the difference between the maximum and minimum values is

greater than the allowable variation 5R(jOOi) in T at the frequency oi = 1, (as given by

Equations (11-8) and (11-10) and determined from Figure IH-4), shift the template vertically

as shown in Figure 11-6, until the difference equals 5R(jl) (to position 2). Conversely, if

the difference is less than that allowed, move the template vertically downward until the

equality is obtained. When the position of the template achieves the equality (position 2 of

the example), mark the nominal point Po of the template on the Nichols chart. The point

marked corresponds to the magnitude and phase angle values of L00 1) read from the

horizontal and vertical scales of the Nichols chart, where the nominal loop transmission,

Looij), is given by:

L(OOCi) = G(joi)Po(Joi) (II-11)
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Repeat the process horizontally across the chart at different values of Ang[Lo(jto)]. The

points marked on the chart form a curve BR(Jtoi) representing the boundary of Looi) at the

given frequency of the template. As long as Lo(jo i) lies above or outside the boundary

BR(joi) at the frequency co = oj, the variation in T due to the uncertainty in P is less than or

equal to the relative change in T allowed by the design specifications at that frequency.

Repeat the boundary BR(Jcoi) derivation for various frequencies, wi, using the

corresponding plant templates to obtain a series of bounds on LoOu) (Ref 8:291-292).

Likewise, the step disturbance response specification (line TD of Figure 11-4) is

converted to bounds on LoJjoi). In order to effectively reject the disturbance, the following

inequality must be satisfied:

1
_ I C(jo) I (11-12)

I 1 + Ljo) I

where IC(jco)l is the magnitude of the boundary, TD, of Figure 11-4. Expressing the

magnitudes in decibels and rearranging terms, the inequality is written as:

Lm [I + L(jco)] _> -Lm [Coco)] (11-13)

A template is placed on the inverted Nichols chart such that its lowest point rests directly on

the contour of constant Lm[ 1 + L(jco)] equal to -Lm[Coo)] at the frequency wo for which

the template is drawn. The point Po is marked on the chart and the template slid along the

same contour forming a bound BD(jco i) on Lo(Jcoi). Bounds are formed in this manner for

all frequencies coi considered using the set of templates. Employing the rectangular

(Lm[LI) grid, transcribe the disturbance bounds BDO(o i) onto the upright Nichols chart

having the command response bounds BR(jco) already drawn (see Figure 1-7). At each

frequency of interest, the lower of the two bounds is erased. The remaining bound, labeled

Bo(Jcoi), places the greatest demand on Lo(jCw) at the given frequency. The point being

made is the worst case bound must be used in the shaping of Lojjo).
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Universal High Frequency Bound

The universal high frequency (UHF) bound ensures the loop transmission L has

positive phase and gain margins, whose values depend on the oval of constant magnitude

chosen (see Figure 11-7). As the frequency o increases, the plant templates become

narrower and can be considered vertical lines as co approaches infinity. The allowable

variation in T increases with frequency also. The result is the bounds of Lo(jo i) tend to

become a narrow region about the 0 dB, -180 degree point (origin) of the Nichols chart at

high frequency. To avoid placing closed-loop poles near the jco axis resulting in oscillatory

response, a UHF bound is needed on the Nichols chart. With increasing co, the bounds on

L. approximately follow the ovals encircling the origin. Choose one of the ovals near the

origin. In Figure 1-7, the contour of constant magnitude equal to 5 dB is used for this

example. From the templates corresponding to high frequency, find the template with the

greatest vertical displacement, Av, in dB. Av may be accurately determined by finding the

maximum change in Lm[P(jo)] in the limit as wo approaches infinity. Translate the lower

half of the 5 dB oval down the length of the template, i.e. Av, as shown, thus obtaininng

the UBF bound (see Figure 11-7) (Ref 10:20-22).

Shaping of the Nominal LOOp Transmission Lo(Wic)

The shaping of a nominal loop transmission conforming to the boundaries of Lo is the

most crucial step in the design process. A minimum bandwidth design has the value of L.

on its corresponding bound at each frequency. In practical designs, the goal is to have the

value of Lo occurring above the corresponding bound, but as close as possible to keep the

bandwidth to a minimum. Figure 11-7 shows a practical design for L.. Note, any

right-half-plane (rhp) poles and/or zeros occurring in P. must be included in Lo to avoid

any attempt to cancel them with zeros and/or poles of G. Although not required, using the

poles and zeros of P. as a starting point in the design of Lo is suggested, avoiding any

implicit cancellation of roots in determining G. Figure 1-8 provides an algorithm which
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Fig. 11-8. Algorithm for Loop Transmission Shaping

11-16



may be helpful in shaping L.. For additional discussion concerning loop transmission

shaping along with specific examples, see Appendix A.

Solving for the Compensator G

The compensator G is obtained from the relation: G = Lo/P o. If the L. found above

does not contain the zeros and poles of P., then the compensator G must cancel them.

Note, cancellation occurs only for purposes of design using the nominal plant transfer

function.

Provided the nominal loop transmission L(jco) is shaped properly, i.e. meets

requirement of being on or above the bound BoOJji), at each corresponding frequency, the

variation in T resulting from the uncertainty in P is guaranteed to be less than or equal to the

allowable relative change in T obtained from the design specifications (Ref 8:291). The

design of the prefilter F is the final step in the design process.

Desim of the Prefilter F

Design of a proper Lojo) only guarantees the variation in IT(jco)l is less than or equal

to that allowed. The purpose of the prefilter is to position Lm[T(jo)] within the frequency

domain specifications. For the example given above, the magnitude of the frequency

response must lie within the bounds shown in Figure 11-4 and redrawn in Figure 11-9. One

method to determine bounds on the prefilter F is as follows. Place the nominal point of the

toi = 1 template on the Nichols chart where the Lo(jl) point occurs. Record the maximum

and minimum value of Lm[T(jl)], 1.2 and 1.0 in the example, obtained from the curved

magnitude contours. Compare the values found above to the maximum and minimum

values allowed by the frequency domain specifications of Figure 11-4 at (oi = 1, (0.7 dB

and -0.8 dB). Determine the range in dB Lm[T(joo)] must be raised or lowered to fit within

the bounds of the specifications. For example, at coi = 1, the actual Lm[T(jl)] must be

within the bounds as given by: (Lm[TUI = 0.7 dB) > Lm[T(jl)] > (Lm[TL] = -0.8 dB).
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Fig. 11-9. Requirements on the Prefilter F

Fig. 11- 10. Frequency Bounds on the Prefilter F

11- 18



But, from the plot of L 0(j 1), the actual range of Lm[T(j 1)] is: 1.2 dB > Lm[T(j 1)] > 1.0

dB. To lower Lm[T(jl)] from the actual range to the desired range, the prefilter,

Lm[F(jow)], required at oi = 1 is: (0.7 dB - 1.2 dB ) > Lm[F(jl)] > (-0.8 dB - 1.0 dB), or

-0.5 dB > Lm[F(jl)] > -1.8 dB (see Figure 11-9). The process is repeated for each

frequency corresponding to the temp!9tes used in the design of L0 j)). Therefore in Figure

HI-9, the difference between the TU and Tma x curves and the difference between the TL and

Tmin curves indicate the requirements for F(jo) as a function of frequency.

Bounds on F, (Lm[Tu] - Lm[Tmax]) > Lm[F] > (Lm[TLI - Lm[Tmin]), are plotted as

a function of frequency as shown in Figure 1-10. Using a straight line approximation,

determine a transfer function F(s) whose magnitude lies within these bounds. The transfer

function obtained in this manner is the prefilter F (Ref 8:301).

The single loop design is complete with the design of F. The system response is

guaranteed to remain within the bounds of the design specifications, provided the

uncertainty in P stays within the range assumed prior to the design process (Ref 8:288).

Summary

This chapter presents an overview of the MISO design technique of Dr. Horowitz for

minimum phase systems with uncertain plants. The technique is based entirely in the

frequency domain and makes considerable use of Nichols and Bode plots. Graphical

methods can be used for much of the design process.

Design specifications are translated into the frequency domain and constitute limits or

boundaries on the frequency response of the system control ratio and the loop

transmission. The two compensator elements G and F are synthesized to control the

system response to inputs and disturbances.
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IH. Multiple Input - Multiple Output Design Theory

Introduction

The design approach for each loop of the multiple input - multiple output system is

identical to that for the MISO system described in Chapter II. But first, the MIMO system

is separated into a set of MISO systems. The set taken as a whole is equivalent to the actual

MIMO model.

In general, an n x n MIMO system can be represented in matrix notation as y = Pu,

where y is the vector of plant outputs, u is the vector of plant inputs, and P is the plant

transfer function matrix relating u to y. The P matrix is formed from either the linear

differential equations describirn, the system or directly from the system state space

representation.

Dr. Horowitz has shown, by the use of fixed point theory, the inverse of the P

matrix, defined as Q', contains elements which are the reciprocals of n2 single loop

transfer functions equivalent to the original MIMO plant. The MIMO problem is then

broken into n loop designs and n2 prefilter/disturbance problems which are handled as

described in Chapter lI. The solution of the MISO problems taken as a whole is

guaranteed to solve the original MIMO problem (Ref 11:677, 12 and 16).

The MIMO Plant

The MIMO plant is represented by the diagram of Figure Ill-1. The n x 1 input

vector u produces an n x 1 output vector y. The relationship between y and u is described

by the n x n plant matrix P which is known only to be an element of a set of possible P's.

It is assumed the range of uncertainty in P can be determined, probably in the form of

empirical data relating u to y. Note the input and output vectors are assumed to be the

same dimension. Although this may appear to be a restrictive assumption, it can be shown

only n outputs can be independently controlled with n inputs (Ref 7:530-536).
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Fig. 11I-1. General n x n MIMO Plant

Thus if the existing model defines an unequal number of inputs and outputs, the first step is

to modify the model to make the dimensions of the input and output vectors equal.

The plant matrix P can be derived directly from the set of coupled, linear, time-

invariant differential equations describing the behavior of the plant in response to its inputs.

For example, consider a general plant model of the form shown below.

[(a)y1 + (bs2 + cs)y2] = [(f) uI + (g)u 2]

[(ds)yl + (e)y 21 = [(h)ul + (i)u21

The variables (a) through (i) are constant coefficients, the y's are the outputs, and the u's

are the inputs to the plant. The system described by Equation (111-1) can be represented in

matrix notation as given below.

a bs2 + cs
ds e g

Define the matrix multiplying the output vector y as M and the matrix multiplying the input

vector u as N. The system is now described by the equation:

My = Nu (I-3)
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The plant matrix required is defined by:

y = Pu (111-4)

Thus, the plant transfer function matrix is found from the equation:

P =M-N (-5)

The standard state space representation for a system is described by the equation (Ref

5:93):
= Ax + Bu

(III-6)
y = Cx

The block diagram for this system is shown in Figure II-2.

U y

Fig. 11I-2. Standard State Space Diagram

Although any number of states may be represented, it is again assumed the input and

output vectors, u and y respectively, are of equal dimension. Assuming the system is

linearized and the matrices, A, B, and C, are time invariant, the plant transfer function

matrix P is obtained from the equation:

P = C[sl - A]-IB (11-7)

The plant matrix is a representative member of a set of possible plant matrices due to the

uncertainty in the plant parameters. In practice, a finite set of P matrices is formed

representing the plant under varying conditions.
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Fig. I-3. Two Degree-of-Freedom MIMO Feedback Structure

MIMO Compensation

The compensation scheme for the MIMO system is similar to the MISO system of

Chapter II. The basic MIMO control structure is shown in Figure 111-3 where P is the plant

matrix with uncertain parameters, G is a diagonal compensator matrix, and F is a diagonal

compensator matrix, and F is a prefilter matrix. Designs involving a nondiagonal G matrix

(Ref 13:14) are not considered in this thesis. The functions G and F are identical to those

of G and F of the MISO system of Chapter II. Figure 111-4 shows a detailed breakdown of

the two-by-two MIMO structure with a diagonal G matrix where:

G F P =P121

0 g92 f21 f22J P21 P22

2 \ -2 P21

r 1 -

22 I

Fig. III-4. Two-by-Two MIMO Feedback Structure
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Constraints on the Plant Matrix

The set of P matrices is tested to ensure two critical conditions are met (Ref 9:86-90):

1. P must not be singular for any possible combination of plant parameters,

i.e. P-1 must exist.

2. As s -> o, IPlIP221 > IP12P21 1 for all possible plants. This is a require-

ment for the two-by-two case. For explanation of the constraint

inequality for three-by-three and higher cases, see Reference 9.

The first condition is absolutely necessary to ensure controllability of the plant. The

inverse of P produces the effective transfer functions used in the design. If condition 2 is

not satisfied, it may be possible to change the ordering of the input or output vector which

changes the ordering of the P matrix elements.

Effective MISO Loops

The following procedure is used to obtain the set of MISO systems equivalent to the

MIMO system. The matrix, Q = p-I is defined having elements, qij'. the n2 effective

transfer functions needed are given by: qij = 1/qij'. Reference 9 contains the derivation

and proof of this equivalence. The n x n MIMO system is now treated as n2 MISO

problems. Figure 111-5 shows the four effective MISO loops resulting from the

two-by-two MIMO system (Ref 11:682).

Fig 11 91115 Efetv M 1S Loopsj1 q lf 21 19 ,22 f 22 92q22
/ 21 r2 Y22

< <

Fig. III-5. Effective MISO Loops
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Each loop in Figure 11-5 is handled as an individual MISO design proble~n in

accordance with the procedures presented in Chapter II. The f's and g's are the

compensator elements F and G described previously. The disturbances, dip represent the

interaction between the various loops. Each dij is obtained from the relationship below.

bkj
-dij = , k*i (111-8)

k IqRI

The term, bkj, in Equation (111-8) is the modeled transfer function of the upper response

bound, (TU or TD in Figure 1-4), for the respective input/output relationship. The bounds

are obtained from the design specifications (Ref 11:681-684 and 16). Note the first digit of

the subscript of bki refers to the output variable and the second digit refers to the input

variable. The bound, bkj, is a function of the response requirements on the output, Yk, due

to the input, rj.

A recent improvement (the Improved Method) in the design technique involves

modification of the q's on the second and subsequent loops based on the g's already

designed. This reduces the inherent overdesign in the early part of the design process.

During the final loop, the exact equation representing the loop and the interactions of the

other loops are used (Ref 11:977). The use of the improved method is demonstrated in the

description of the design performed for this thesis (see Chapter V).

Basically Non-Interacting (BNIC) Loops

When the response of an output, Yk, due to an input, r, is ideally zero, the Ykj loop is

called a basically non-interacting (BNIC) loop(Ref 11:697). Due to loop interaction and

plant uncertainty, the ideal response is not achievable. Therefore, the performance

specifications describe maximum allowable re3ponses and the loop is handled exclusively

as a disturbance rejection problem.
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SummM

This chapter describes the multiple input - multiple output plant and the plant transfer

function matrix P describing it. Guidelines are presented for obtaining the plant matrix

which relates the output vector to the input vector.

The division of the MIMO system into an equivalent set of MISO systems is given

via the inverse of the P matrix. The MISO problems are solved in accordance with MISO

design theory presented in Chapter II. The solution of the MISO problems guarantees the

solution of the MIMO problem.

III- 7



IV. The AFTlIF-16 Aircraft

Introduction

This chapter presents a brief description of the AFTI/F-16 aircraft and the basic

differences between it and the standard production F-16 fighter aircraft. The state space

model used to obtain the plant transfer function matrix is given along with a definition of

the input and output variables used in the controller design. See reference 2 for the

detailed derivation of the state space model describing the AFTI/F- 16.

Aircraft Description

The AFTI is a highly modified F-16 aircraft. Two prototype aircraft have been built

to flight test the integration of advanced technology characteristics and determine the

benefits obtainable over conventional fighter aircraft. The characteristics include three

digital flight control computers for triple redundancy and a flight control system designed to

perform specific mission phases. The three computers operate independently to calculate

the flight control laws. A redundancy management system uses comparison monitoring of

the three computers and internal self-test features to detect failed system components and

provide a two/fail operate capability. Thus, the system can continue operation after two

similar failures. Eight separate control modes are implemented in the flight control

computers with extensive gain scheduling to achieve unprecedented performance over the

mission phases.

The AFTI differs from a conventional F-16 both internally and externally. The

primary external modifications to date are the addition of twin vertical canards mounted

under the engine inlet and a dorsal fairing between the cockpit and the vertical tail. The

vertical canards provide for the development of direct sideforces. The dorsal fairing houses

avionics and instrumentation needed in the flight test effort.

Internally, a completely new flight control system is used in the AFTI while retaining
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the original F-16 sensors. Longitudinal and lateral accelerometers measure body

accelerations at the pilot's station. Body rotational rates are sensed using rate gyros located

very close to the aircraft's center of gravity. Angle of attack is also sensed by two fuselage

side-mounted cones and a hemispherical differential pressure probe extending from one

side of the aircraft. The F-16 uses quadruple redundancy in its flight control system.

Thus, four identical accelerometers are employed on each axis as well as sets of four

identical rate gyros each to sense roll, pitch, and yaw rates about the respective axes. The

AFTI uses only three accelerometers per axis to provide the same fail/operate capability as

the F-16. The signals obtained from the fourth are used by the flight test instrumentation.

The AFTI/F-16 aircraft is displayed in Figure IV-1. The solid black regions in the

figure denote the control surfaces used for the development of the state space model (Ref

2). Since the longitudinal mode of pitch pointing is being investigated in this study, the

surfaces of interest are the horizontal tail and the trailing edge flaperons. For longitudinal

maneuvers, the horizontal tail surfaces operate symmetrically as elevators. Likewise, the

flaperons on the trailing edge of each wing operate symmetrically as flaps. The sign

convention used is also shown in the figure.

Longitudinally, without a control system, the aircraft is statically unstable at subsonic

flight conditions as demonstrated in Figure IV-2. By design, the center of gravity (CG) is

located behind the aerodynamic center (AC). Typically the difference between the CG and

AC is measured in percent of the mean aerodynamic chord (MAC). As shown in the

figure, the aircraft is approximately three percent unstable in the subsonic region and only

neutrally stable in the transonic region. At supersonic speeds, the aircraft is statically

stable, but less stable than most conventional aircraft. Designing the CG to be located

behind the AC, i.e. an unstable design, negates the need for the elevator to continuously

develop a down load in trimmed flight. The tail is used to add lift to the aircraft. This

design feature reduces drag and allows the aircraft to obtain higher load factors. Thus,

faster turn rates and longer operational range can be achieved.
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The unaugmented transfer functions describing the aircraft dynamics at the three flight

conditions considered in this thesis are given in Appendix C. Investigating Cases 1 and 2,

at subsonic flight conditions the short period roots are real and one is unstable. The flight

control system must provide longitudinal stability as well as the performance desired.

Definition of the State Space Model

The linear state space model used to represent the unaugmented aircraft dynamics was

developed by Mr. Barfield. The state equations are written in the form:

= Ax + Bu (IV-1)

y =Cx (IV-2)

where the longitudinal axis state vector is given by:
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U

x Anps + k1S e + k28f (IV-3)

q

Sy

The state vector elements are defined in Table IV- 1 below along with the corresponding

units of each element. Note the state vector element Anps + kle + k28f is the longitudinal

acceleration at the pilot's station augmented with the contributions from control surface

deflections. The state vector element resulted in this form during transformations by Mr.

Barfield on the system state space representation in order to achieve a B matrix in zero-B2

form (Ref 2:52). This form was desired to permit easier computation of transmission zeros

in Mr. Barfield's design effort. The ki8e and k28f terms are subsequently removed by

Equation (IV-2) to yield Anps and q as output variables by accounting for the deflection

terms in the C matrix (see Appendix B). Reference 2 provides a complete description of

the state space model developed by Mr. Barfield to represent the AFTI/F-16.

Table IV- 1. Longitudinal Axis State Vector Element Definitions

Element Unit Definiti

a deg angle of attack

0 deg pitch angle

u ft/sec velocity along the x-axis

Anps g longitudinal acceleration at the pilot's
station

q deg/sec pitch rate

8e  deg elevator deflection angle

8f deg flap deflection angle
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The output states chosen to be controlled are the longitudinal acceleration at the pilot's

station Anps a-d the pitch rate q. These quantites ixe selected as output variables because

the pilot controls them in flying the aircraft. The pilot feels (and desires to command)

angular rates and accelerations at the position where he is physically attached to the aircraft.

Anps is available for feedback via flight control accelerometers located at the pilot's station.

Likewise, body rotational rates can be measured and fed back from sensors near the aircraft

CG (Ref 2). The output state vector y is defined in Equation (IV-4).

Longitudinal motion of the aircraft is controlled through deflection of the elevator and

flap control surfaces. Elevator and flap actuator models for these control surfaces are

included in the state space model. Thus, 8ecmd and Bfcmd are the respective command

inputs to the elevator and flap actuator models (Ref 2). The inputs to the state space model

are given by the vector u below.

y = u = j (IV-4)
qfcmd

The state space model components for matrices A, B, and C and the constants k1 and k2 of

Equation (IV-3) are provided in Appendix B for the three flight conditions considered in

this thesis.

This chapter provides a brief description of the AFTIIF-16 aircraft and the state space

model used to represent the unaugmented dynamics of the aircraft. The state space model

developed by Mr. Barfield is converted into plant transfer functions required for the

application of the design method as described in Chapter V.
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V. Application of the Design Technique

Introduction

The application of the improved Quantitative Feedback Theory (QFT) technique (Ref

12) of Dr. Isaac Horowitz is described in this chapter. The technique is applied to a model

of the AFTI/F-16 longitudinal aircraft dynamics developed by Mr. Barfield (Ref 2). A

flight controller design for the longitudinal maneuver of pitch pointing is obtained.

The following presentation is the step-by-step approach recommended to apply the

design technique. Each procedure used to design the flight controller is given.

Definition of the MIM Plant

The general form of the multiple input - multiple output plant is shown in Figure

III-1. The longitudinal aircraft dynamics of the AFTI/F-16 are modeled by a two input -

two output plant. The plant output vector y and the plant input vector u are obtained from

the state space model defined in Chapter IV. The vector elements are given by Equation

(IV-4) and repeated below for convenience.

[Anps [ 1ecmd1y = u =(V-i)
q fcmd

Deriving the Plant Transfer Function Matrix

The method of Dr. Horowitz is a frequency domain approach requiring the plant to be

described as a transfer function matrix. The state space representation of the plant

developed by Mr. Barfield must be translated into a set of transfer functions relating the

input and output variables. The transfer function matrix is obtained from the state space

model using Equation (111-7) repeated below for convenience.

P = C[sI - A]-IB (V-2)

For the two input - two output plant of this study, the P matrix obtained from Equation
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(V-2) is a two-by-two matrix. The input/output relationship is given in matrix form by:

y = Pu (V-3)

In terms of the various matrix elements, this relationship is written as:

[Anps [PH1 P121 'e=d] V4

qP21 P22 J SfcmdJ

where:

[ Anps I [ Anps I
Pl - P12 =

[ 8ecmd md]

(V-5)
[q ][q ]

P21 - P22 =  fcmd[ 8ecmd ]I fcn

The plant transfer function matrix P is obtained for each flight condition using a

computer program. As stated in Chapter III, each plant matrix is a member of a set of

possible plant matrices due to the uncertainty in plant parameters. Plant uncertainty is

demonstrated by the variation in gain, poles, and zeros of the transfer functions from flight

condition to flight condition. The P matrix elements obtained fi'om the state space data

(Appendix B) for the three flight conditions considered are given in Appendix C.

MIMO Compensation Structure

The compensation scheme for the MIMO system uses a two degree-of-freedom unity

feedback structure. This control structure is used by the technique when only the plant

output and system command input quantities are known. The control structure is shown in

Figure 111-3 for the general case. The designer is provided two design degrees-of-freedom

in that the two separate compensation matrices F and G may be designed. The

compensator G guarantees the variation in the closed-loop system (due to plant uncertainty)

remains less than or equal to the variation allowed by the closed-loop response tolerances.
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The prefilter F positions the closed-loop frequency response within the bounds of the

frequency domain specifications (Chapter I). Measurement of the plant output quantities y

and the system command input quantities r allows the use of this structure. For the

two-by-two plant being considered, the control structure is shown in Figure V- 1.

rz  Y2

Fig. V-1. MIMO Compensation Structure for a 2 x 2 Plant

For a two-by-two MIMO plant, the general system diagram is given in Figure II-4 in

terms of the individual matrix elements. The structure shown in Figure I1-4 is reduced to

that of Figure V-2 based on the following design considerations. The design technique is

used to obtain a longit ,dinal pitch pointing controller. In the pitch pointing maneuver, the

aircraft pitch rate is to track the pilot's pitch rate command input while maintaining

longitudinal acceleration at a negligible value.

P

U 2 P

I 112 -1 22 Y

Fig. V-2. Simplified 2 x 2 MIMO System Diagram
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The first reduction of the system from the most general case is to use a diagonal G

matrix. The assumption is made that the output q is controlled by the input 8ecmd while the

output Anps is determined by the input 8fcmd in order to diagonalize the G matrix.

Investigating the aircraft dynamics (Ref 2), the assumption is reasonable though not

entirely accurate. A controller design incorporating both control surfaces to control

individual plant outputs can be obtained by using the corresponding diagonal and

off-diagonal G matrix elements. Using a diagonal G is not a restriction of the technique,

but simplifies the design effort for a preliminary design.

The second simplification is to assume there is only one command input to the

system. Recall for the pitch pointing maneuver, the pilot commands a rate in pitch with no

desired change in acceleration. Let the pilot's pitch rate command be defined as the r1 input

and the acceleration command as the r2 input. Since the change in acceleration is desired to

equal to zero, then r2 is set equal to zero and may be ignored for the remainder of this

study.

The final reduction of the system control structure is made on the F matrix. The

matrix elements f12 and f22 are set equal to zero since the input to the elements r2 is zero.

The prefilter element f21 is also set equal to zero because no interaction is assumed between

the acceleration loop and the pitch rate command input. The acceleration output Y2 is

ideally zero for a command input in pitch rate. Therefore, the acceleration loop is BNIC

with respect to the pitch rate command input. Incorporating these simplifications into the

diagram of Figure 111-4 results in the diagram of Figure V-2.

Eouivalent MISO Problem Set

The Quantitative Feedback Theory technique transforms the MIMO design problem

into an equivalent set of MISO design problems. The theoretical development of the

technique requires the plant transfer function matrix P to meet two constraints for the 2 x 2

case (Ref 9). The equivalent MISO set of transfer functions describing the plant are
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obtained from the inverse of the plant transfer function matrix, p-1. The solution of the

MISO problems taken as a whole is guaranteed to solve the MIMO problem (Ref 11,12).

Test Plant Transfer Function Matrix Against Constraints. The 2 x 2 plant matrix, P,

obtained at each flight condition is tested against the two constraints given in Chapter 111.

In Appendix C, the plant transfer function matrices and the results of the constraint tests are

given for each case. To illustrate this operation, the P matrix elements and the test results

are presented below for the second case.

Case 2: 0.9 Mach; 20,000 Feet

-2.128(s + 0.012228)(s - 0.001170)(s + 1.3144 ± j13.07744)
pa1(s) =

(s + 0.0075694 ± jO.0540)(s - 0.96451)(s + 3.2234)(s + 20)

1.4992(s + 0.0122185)(s - 0.001 13786)(s - 8.48425)(s + 8.4714)
P12 (s) =

(s + 0.0075694 ± jO.0540)(s - 0.96451)(s + 3.2234)(s + 20)
(V-6)

-481.2(s)(s + 0.012642)(s + 1.510776)
P21(s) =

(s + 0.0075694 ± jO.0540)(s - 0.96451)(s + 3.2234)(s + 20)

-129.46(s)(s + 0.012548)(s + 1.64587)
P22(s) =

(s + 0.0075694 ± jO.0540)(s - 0.96451)(s + 3.2234)(s + 20)

The constraint test results are:

1. P is non-singular.

2. As s-,oo, I pP221 > IP12P211 becomes: 275.5 > 721.4

Constraint 2 is not met.

Investigating the results shown in Appendix C, constraint 2 is not met for all three

cases. The constraints on the P matrix must be met to apply the QFT technique (see

Chapter III). Rearranging the output vector allows the constraints to be met. Having met

the constraints, the MIMO system can be broken into a set of equivalent MISO systems.
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Rearrange the Output Vector to Meet the Constraints. As shown in Appendix C,

constraint 2 is not met for all three flight conditions. By rearranging the output vector as

shown in Equation (V-8), this constraint is met. The modified relationship between the

input and output variables is expressed as:

[ q~~ I [PI P1Iem (V-7)
Anps  P21 P22 k'fcmd

where the output vector, y, is redefined as:

y = (V-8)
Anps

and the P matrix elements are given by:

[ q] [ q]
[p ecmd P [Sfcmd]

(V-9)
[ Anps ] [ Anps I

P21 = P22 -[ 8 ecmd ] [ bfcmd ]

The effect on the P matrix elements pij due to rearranging the output vector is easily

realized by the following operation. Simply change the Pij subscripts from the old set to

the new set as shown in Table V- I. The transfer function parameter values, i.e. gain, poles

and zeros, remain unchanged through the transformation.

Table V- 1. Plant Transfer Function Subscript Change

Subscript Value

11 21

12 22
21 11

22 12
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The transfer functions resulting from the output vector modification are given in Appendix

D for each flight condition. The revised set of transfer functions are retested against the

plant matrix constraints. The results for Case 2 are given below.

Case 2: 0.9 Mach; 20,000 Feet

-481.2(s)(s + 0.012642)(s + 1.510776)
p11(s) 1- (s + 0.0075694 ± jO.0540)(s - 0.96451)(s + 3.2234)(s + 20)

-129.46(s)(s + 0.012548)(s + 1.64587)
P12(s) -

(s + 0.0075694 ± jO.0540)(s - 0.96451)(s + 3.2234)(s + 20)
(V-10)

-2.128(s + 0.012228)(s - 0.001170)(s + 1.3144 ± j13.07744)
P21(s) =

(s + 0.0075694 ± jO.0540)(s - 0.96451)(s + 3.2234)(s + 20)

1.4992(s + 0.0122185)(s - 0.00113786)(s - 8.48425)(s + 8.4714)

P22(s) =
(s + 0.0075694 ± jO.0540)(s - 0.96451)(s + 3.2234)(s + 20)

The constraint test results are:

1. P is non-singular.

2. As s- o IPlP221 > IP12P211 becomes: 721.4 > 275.5

The constraints are met.

Appendix D demonstrates the constraints are met at all flight conditions after

modifying the plant output vector. Having met the constraints, the inverse of the plant

matrix is used to break the MIMO design problem into an equivalent set of MISO design

problems.

Equivalent MISO Design Problems. The technique transforms the MIMO system into

an equivalent set of MISO systems as explained in Chapter III are derived in reference 9.

The set of MISO plant transfer functions are obtained from the inverse of the MIMO plant

transfer function matrix. Recall from Chapter III, the matrix Q' = p-I is defined having

elements qij'- The reciprocals of the qij' elements are the transfer functions required, i.e.

qij = 1/qij'. The set of qij transfer functions are given in matrix form by the matrix Q.
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Q = q12 11)
q2I 2

where:

det [P1

qij =  (V-12)
Adj[pij]

Note the Q matrix elements are the reciprocals of the P-1 matrix elements. A

computer program is used to obtain the qij transfer functions at each flight condition. The

sets of these functions are listed in Appendix E for all three cases. The functions for the

second case are given below to illustrate the results.

Case 2: 0.9 Mach; 20,000 Feet

2.07171(s + 0.0027369)(s + 0.0121827)
qII(s) =

(s + 0.0126422)(s + 1.510776)( s + 20)

-468.47082(s)(s + 0.0027369)( s + 0.0121827)
q12(s) =

(s-0.00117)(s + 0.012228)(s + 1.31436 ± j13.077)(s + 20)

(V-13)

-7.700494(s + 0.0027369)(s + 0.0121827)
q21(S) =

(s + 0.0125478)(s + 1.64587)(s + 20)

-664.9586(s)(s + 0.0027369)(s + 0. 121827)
q122(S) =

(s - 0.0011379)(s + 0.012219)(s - 8.48425)(s + 8.4714)(s + 20)

The 2 x 2 MIMO control problem is treated as four equivalent MISO control problems

where the MISO plant transfer functions are given by the Q matrix elements. The four

equivalent MISO loops are shown in Figure III-5. Recall from the particular design

considerations described earlier in the chapter, the 2 x 2 MIMO system is simplified as

shown in Figure V-2. The simplification reduces the four loop design problems of Figure

111-5 to the two shown in Figure V-3.
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Fig. V-3. Two Equivalent MISO Loops

In Figure V-3, the pitch rate loop output is Yii, which is the pitch rate output Yi due

to the pitch rate command input r1 . The acceleration loop output is Y21, which is the

acceleration output Y2 due to the command input r1. The interactions between the pitch rate

and acceleration loops are represented as disturbance inputs. The inputs d11 and d21 are

obtained using Equation (1-8).

1,21bl

-dll - -d 21 = (V-14)
q12 q21

The numerator terms bII and b21 are the respective upper bound transfer functions for the

pitch rate and acceleration loops (see Design Specifications below). Note the acceleration

(lower) loop of Figure V-3 is a BNIC loop. Thus, it is treated as a disturbance attenuation

problem.

Improved Design Technique. An improved MIMO synthesis technique developed by

Dr. Horowitz (Ref 12) provides several advantages over the previous method. The original

MIMO design method, based on fixed point theory (Ref 9), replaces the uncertain n x n

MIMO system by n2 uncertain MISO systems whose solutions are guaranteed to solve the
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original MIMO problem. However, some overdesign is inherent in this method. An

improved technique retains the MISO equivalence approach, but does not require fixed

point theory for its derivation. The addition of constraints on the MIMO plant (Chapter I1)

allows the design method to achieve arbitrarily small sensitivity over an arbitrarily large

frequency bandwidth. Also, the overdesign inherent in the original method is reduced (Ref

12:977-978).

Applying the new technique, the loop chosen to be designed first is completed using

the original method (Ref 9). The second loop is designed after the first loop is finalized.

The design of the final loop is based on the exact equation of the closed-loop transfer

function found by applying Mason's Rule (Ref 5) to the system shown in Figure V-2. A

new effective single loop plant, qll*, is obtained which is a function of the first loop

designed and the interaction between loops (Ref 13:102-103).

q 11(s)qll(S)* =

- 'I(s) (V-15)

1 +12(s )

where:

y(s) = ql(s)c22(s) and 12(s) = g2(s)q22(s) (V-16)
q 12(s)q2I(s)

The disturbance input to the final loop is no longer a function of the uncertainty (upper

bound) of the first loop, thus reducing the overdesign of the original method. The final

loop disturbance input is a function of the off-diagonal prefilter matrix elements (Ref

12:979) which equal zero in this study. Therefore, the disturbance input to the final loop

is zero.

The acceleration loop is chosen as the first loop to be designed since it is strictly a

disturbance attenuation problem. The pitch rate loop is then designed afterwards.

Choosing the pitch rate loop to be designed first requires solving a disturbance attenuation

problem and a tracking problem simultaneously. Thus, by initially designing the
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acceleration loop, some reduction of the design effort is achieved. Applying the improved

MIMO synthesis technique results in the modified set of equivalent SISO and MISO loops,

respectively, shown in Figure V-4 where the new effective MISO plant transfer function

for the pitch rate loop is given by Equation (V- 15).

9 2  q q2
Y2 1

fc 11 Iq"
r 0 Y11

-I

Fig. V-4. Equivalent SISO and MISO Loops of the Improved Technique

Refer to references 12 and 13 in the bibliography for a detailed explanation of the improved

synthesis technique and an example of its application. The remainder of this chapter

illustrates the application of the new method to the problem considered in this study.

Design Spcifications

The purpose of determining output performance tolerances and the technique used to

obtain them is given in Chapter II. Recall the design specifications are quantitative

parameters in the design process. Thus, closed-loop system response tolerances must be

determined prior to the design phase. The design specifications describe the upper and

lower limits of acceptable output response to a desired input or disturbance. Note, typically

system response to a step disturbance requires the output to remain below a given value,

therefore only an upper bound on the output is necessary.
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The function of a pitch pointing controller is to track a command input in pitch rate

while maintaining longitudinal acceleration at a negligible value. Specifications on the pitch

rate output YI 1 and the acceleration output Y21 are needed to define the limits of acceptable

system response. The type of system forcing function is also specified since system

response is a function of the input used.

A step input is chosen as the desired pitch rate command input rl. A good initial test

of system response is provided by a step input since it combines both an abrupt change in

magnitude as well as a constant (non-varying) value. Another advantage of using a step

input is most standard response specifications (Ref 5) are based on a step forcing function.

In general, a system having acceptable step response performs well with other input types.

The pitch rate step response bounds are shown in Figure V-5. The curves are

sketched after investigating the simulations shown in reference 2 and determining

reasonable response bounds in terms of aircraft rate and position limits, aircraft maximum

capabilities, and desirability for combat applications (i.e. fast response with minimum

overshoot). The upper bound b11 is drawn to permit a rise time of 0.9 seconds and a

maximum overshoot of 1.5 percent. The lower bound a, 1 allows a first order response

with a maximum settling time of 4.6 seconds. Any smooth and well behaved response

lying within the bounds is acceptable.

The optimal acceleration step response equals zero. However, this optimum response

is not physically realizable. Maintaining the acceleration below a negligible value is a viable

solution. The maximum value chosen, 0.15 g, is shown by the dashed line in Figure V-6.

The representative upper bound b21 provides for an initial transient in acceleration and

settles to a small value, well below 0.15 g. Any acceleration step response having the

general shape of b2l and whose peak magnitude is less than 0.15 g is acceptable. Since the

acceleration loop is treated as a disturbance attenuation problem, a lower bound on the

acceleration step response is not necessary.
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Fig. V-5. Pitch Rate Time Response Specifications
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Fig. V-6. Acceleration Time Response Specifications
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The bound curves are defined using the following notation. Lower bounds are

specified by aij where the (ij) subscripts correspond to the loop output variable with the

same subscripts. The upper bounds are given by bij with the same subscript

correspondence. For example, the bound b21 is the upper acceleration step response bound

related to the acceleration loop output Y21. The bounds a11, b I, and b21 are equivalent to

the bounds T 1, Tu, and Td respectively, as discussed in Chapter II.

Control ratios are modeled for each output response bound using the method

presented in Chapter H. A control ratio pole-zero pattern is adjusted until its time domain

step response matches a bound curve. The control ratios obtained for the step response

bounds are given by Equations (V-17), (V-18), (V-19).

221.7(s + 0.75)
all(s) = (V- 17)

(s + 0.6417)(s + 1.558)(s + 5.40)(s + 5.50)(s + 5.60)

60.26(s + 2.70)
bI 1(s) = (V-18)

(s + 2.5 +±jl.5)(s + 4.350)(s + 4.40)

438(s + 2)(s + 2.1)(s + 2.15)(s + 2.5)(s + 5.73)(s + 5.65)

(s + 0.225)(s + 8.8)(s + 8.85)(s + 8.9)(s + 8.95)(s + 9)(s + 12)(s + 15)(s + 18)

(V-19)

The Bode magnitude plot for each bound control ratio is shown in Figure V-7. These

plots are the frequency domain bounds on the closed-loop pitch rate and acceleration

frequency responses. The MISO closed-loop transfer functions are specified by tip where

the (i) subscript refers to the i'th system output and (j) refers to the j'th system input.

Thus, the closed-loop transfer function for the pitch rate loop is t11 and the acceleration

loop is t2 1. The design specifications require the frequency response of t, 1 and t21 to

remain within the corresponding frequency domain bounds of Figure V-7 for the frequency

range of interest.
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Fig. V-7. Pitch Rate and Acceleration Frequency Domain Specifications

Disturbance Attenuation Comensator Design - Acceleration LOO

The procedure used to design the acceleration loop compensator g2 is presented in

this section, following the general guidelines of Chapter II. As stated earlier, the

acceleration loop is a BNIC loop and is treated as a disturbance attenuation problem. The

acceleration loop is shown in Figure V-8.
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Fig. V-8. Acceleration Loop

The objective is to design g2(s) such that the closed-loop transfer function t21(s) has

no right half plane poles and satisfies the performance tolerances b2 1(Jo) on t2 1(ow). The

closed-loop transfer function of the acceleration loop is given by Equation (V-20).

Y21(s) q22(s) q22(S)t2 1(s) -= (V-20)

d21 (s) 1 + g2(s)q22 (s) 1 + 12(s)

where the loop transmission is expresses as:

12(S) = g2 (s)q 2 2 (s) (V-21)

and the disturbance input is:
hll(S)

- d21(s) = (V-22)
Iq21(s)I

The equivalent SISO plant transfer function for the acceleration loop is q22 . A

nominal plant is chosen as a reference to facilitate the definition and shaping of the nominal

loop transmission 120. In this study, the nominal q220 is chosen having similar frequency

domain characteristics as the actual q22 transfer functions (see Figure F-4, Appendix F).

The nominal transfer function is given by Equation (V-23).

-158.0(s)(s + 0.001)(s + 0.02)q220 (s) = (V-23)(s - 0.0009)(s + 0.025)(s + 4.0)(s - 4.1)(s + 20)

The nominal plant transfer function is used to determine the compensator g2 from the

nominal loop transmission 120 shaped on the Nichols chart. The nominal loop transmission
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is defined by Equation (V-24).

120 (s) = g2(s)q 2 20 (s) (V-24)

The output response must remain below the design specification in order to meet the

acceleration performance tolerances and is obtained from Equation (V-20).

Y21(J0) = t2 1(Jo)d2 1(J)) (V-25)

The output specification is expressed in the frequency domain by the inequality below.

ly2jlpr)l- !5 b21(o) (V-26)

Inserting Equations (V-20), (V-22) and (V-25) into Equation (V-26), then:

lq220(o))( 1t2io))l k122Jo)l lb1j 1 o)l
= 1b2 1(Jo)l (V-27)

1 + g20o)q 220o) I1 + g2 (o)q22(jo) iq2ljow)l

After rearranging terms, Equation (V-27) is written as:

I Ib2fco)t k21(jo)
-< (V-28)

(I + g2 )) 2(jo0)) 1 Ib1loo)l kq 2 jo)l

Inverting both sides of Equation (V-28), the inequality of Equation (V-29) is obtained.

Ibll(o)l kt2(o)l
1 + g2(co)q22(Jo)l (V-29)lb210o) k200)

Equation (V-29) establishes the constraint on [I + 12(o)) (recall Equation (V-21)). The

maximum constraint on 120()) over the range of flight conditions is needed to obtain the

bounds B20(Joi) for shaping the nominal loop transmission 120(J0o).

The Nichols chart is the primary tool used to perform the design, The chart is turned

upside down and the scales modified according to the procedure described in Chapter UI for

the disturbance attenuation problem. The rectangular grid corresponds to the magnitude

and phase of 1200)) while the curved grid corresponds to the magnitude and phase of [1 +

120(0)]. The constraint on 120(0) is achieved from Equation (V-29) and the correspondence

between 120()) and [1 + 1200)] on the inverted Nichols chart.

The usual approach employed to draw bounds on 1200o) requires plant templates.

However, due to their small size, plant templates are impractical to use at various design
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frequencies of interest. The bounds can be obtained numerically following the procedure

outlined below and described in further detail in Appendix H and Chapter V of reference 3.

The design frequencies used are listed in Table V-2.

Table V-2. Acceleration Loop Design Frequencies (Radians/Second)

0.01 2.0 17.0

0.04 4.0 20.0

0.1 5.0 50.0

0.2 8.0 100.0

0.4 10.0 200.0

0.5 12.0 500.0

0.8 14.0 1000.0

The quotient on the right side of Equation (V-29) consists of known elements. The

quotient is evaluated at each design frequency, (o = o i, of Table V-2 for each flight

condition. The result is a Log-magnitude value expressed in dB. Using the curved grid on

the inverted Nichols chart, the magnitude curve corresponding to a given quotient is

located. Taking points along the curve at small increments, the magnitude and angle values

for the bound B2k(Joi) on 12(Jo) are read from the rectangular grid on the inverted chart.

This is accomplished for all design frequencies at each flight condition k. The resulting

constraint on the acceleration loop transmission for a given flight condition is given by

Equation (V-30).

12k(0)) _ B2ko(J) (V-30)

However, the maximum constraint over the range of flight conditions is needed to

obtain the bounds on the nominal loop transmission 120(0). Using the relationship of

Equation (V-2 1) and the known equivalent plant q22k(J0) (Appendix E), the constraint on

the loop transmission can be converted to a constraint on the compensator g2(Joi)"

B2k(Jcoi)
g2k(Ji) - = Bgk(Jcoi) (V-31)

q22k(J")
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Note, B 2 k(joji) is known only at specific points read from the Nichols chart, it is not a

function. Evaluating Equation (V-31) to determine the bound Bg2k(joi) on g2k(JO) is a

point by point process where: Lm[Bg2k(J)]Ang[Bg2k(0i)] = Lm[B2k(joo)]Ang[B 2k(j0oi)]

- Lm[q22k(j)]Ang[q22k(Coi]. A math spreadsheet program is used to simplify the labor

involved in obtaining the bound Bg2kOOi) for each flight condition. Its use is demon-

strated in the example of Appendix H for coi = 8.

Investigating the magnitude values of the three Bg2k(jco) bounds (obtained from the

three flight conditions) at a given angle, the maximum magnitude value is selected for that

angle value. This selection process is repeated at each angle considered. The set of

maximum magnitude values selected for the set of angle values is the maximum bound

Bg2o0(j)i) on g2(Jcoi). The maximum constraint Bg2o0(i) on g2(Joi) is converted to the

maximum constraint B20(Jo) on the nominal loop transmission 12 0 (0) by multiplying

q220(Joi) through Equation (V-31). In equation form:

g20Joi)q 220 (0t) > B200o0)) = Bg20(oi)q220 0o10) (V-32)

From the equality of Equation (V-24), the left side of Equation (V-32) can be expressed in

terms of the nominal loop transmission, i.e.:

12000)a) >! B20J0O i)  (V-33)

The bound B20(jcoi) places the greatest demand on the nominal loop transmission 120 (jco) at

a given design frequency, co = coi . Again, obtaining B20(JCO) from Equation (V-32) is a

point by point process where B20(jco i) is found by: Lm[B 20 (j0oi)]Ang[B20(joi) =

Lm[Bg 20(Joi)]Ang[Bg 2 0(0J)] + Lm[q 220 (jci)]Ang[q 220(Jcoi)]. This process is demon-

strated for coi = 8 in Table H-4 of Appendix H using the spreadsheet program. Thus,

Equations (V-32) and (V-33) define the maximum constraint on 12 (jco) over the range of

flight conditions necessary to obtain the bounds B20(jco) for shaping the nominal loop

transmission 120(jco).

The points corresponding to the B20(j0o) magnitude and angle values obtained at each

design frequency COi are plotted on the inverted Nichols chart as shown in Figure V-9.
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The nominal 120(co) shaped to meet the bounds is also shown in the figure. The Universal

High Frequency Bound (UHFB) chosen is the -5 dB oval on the inverted Nichols chart.

A tradeoff exists between meeting the design specifications and reducing the loop

bandwidth via lowering the loop transmission below a bound at a given frequency. Recall

that the acceleration response obtained is acceptable as long as it remains below 0.15 g.

The bounds at (oi = 2 and coi = 4 dominate the shaping problem. In order to reduce loop

bandwidth, the coi = 2 bound is slacked off somewhat. The optimum amount the loop

transmission may fall below the bound and still meet the design specifications requires

repeating the entire design process for each trial and is beyond the time limitations of this

research.

The nominal loop transmission obtained from Figure V-9 is given by Equation

(V-34). The acceleration loop compensator g2 (s) is obtained by rearranging Equation

(V-24) as shown in Equation (V-36).

7.65036 x 1012(s + 0.001)(s + 0.02)(s + 4.1)(s + 13)(s + 130)120(s) - (V'-34)(s - 0.009)(s + 0.09)(s + 2)2 (s - 4.1)(s + 510 ± j680)2 (s + 60)

-4.842 x 1010(s + 0.025)(s + 4)(s + 4.1)(s + 13)(s + 20)(s + 130)
g2(s) = (V-35)

(s)(s + 2)(s + 2)(s + 0.09)(s + 60)(s + 510 ±j680)(s + 510 ±j680)

where:
120(s)

g2(s) = (V-36)q220(s)

Command Tracking Compensator Design - Pitch Rate Loop

The design of the pitch rate loop compensator gI(s) and the prefilter fl I(s) are

presented in this section using the improved design technique developed by Dr. Horowitz.

The pitch rate response is desired to track the pilot's pitch rate command input, thus the

compensation design involves a tracking problem. The objective is to design gI(s) and

f 1 (s) so the closed-loop transfer function t11 (s) has no right half plane poles and satisfies

the closed-loop performance tolerances. The pitch rate loop is shown in Figure V-10.
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Fig. V-10. Pitch Rate Loop

The pitch rate closed-loop transfer function, given by Equation (V-37), is found by

applying Mason's Rule (Ref 5:162-164) to the MIMO system diagram of Figure V-2. See

Appendix J for the derivation of Equation (V-37).

[fu l(s)][li(s)II1 + 12(s)]
t1l(s) =  (V-37)

[1 + 11(s)][1 + 12(s)] - 7(s)

where:

li(s) = gi(s)lii(s), for i = 1, 2 (V-38)

and

ql I (s)q22(s)
y(s) = (V-39)

q12(s)q 2 1(s)

Equation (V-37) is rewritten as an exact expression for a single loop system via the

following steps. First, divide both numerator and denominator of Equation (V-37) by the

quantity [1 + 12(s)], as shown in Equation (V-40).

til(s) (V-40)-y(s)
[1 + l1 (s)] +

1 + 12(s)

The denominator of Equation (V-40) is regrouped by combining (1) with the quotient term.

Dividing this grouped term from the numerator and denominator, Equation (V-41) is

obtained where the effective loop transmission ll(S)* is defined by Equation (V-42).

f)) (s)ll (s)*t I1 (s) = (V-41)

I +
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where:

11(s)
= (V-42)-yV(s)

1+
1 + 12(s)

Equation (V-41) is precisely the expression for the single loop system of Figure

V-10. The effective loop transmission li(s)* can be rewritten in terms of a new effective

plant q1 I(s)*, as:

li(s)* = [g 1(s)][qjj(s)*] (V-43)

where:

qI1 (s)
q1 l(S)* = -7(s) 

(V-44)
1+

1 +12(s)

Note the new effective plant qll(s)* defined by Equation (V-44), is a function of the

previous acceleration loop design, 12 (s), of Equation (V-38) and the interaction between

loops given by y(s) in Equation (V-39).

The MISO synthesis techniques presented in Chapter H may now be applied to the

pitch rate loop tracking problem having expressed t1 I(s) as given by Equation (V-41). To

facilitate the design, the ql lk(s )* transfer functions are obtained at each flight condition k

since the quantities on the right side of Equation (V-44) are known. The qllk(s)* transfer

functions are listed in Appendix G along with the frequency response plot of each case.

The nominal effective plant transfer function q1 10(s)* is selected having similar frequency

response characteristics as the effective qllk(s)* transfer functions.

0.6008(s+0.0007)(s+3.995)(s+4.0)(s+ 15.755±j21.995)(s+35.736)
ql 1O(S)* =

(s+0.8015)(s+3.856±jO.4836)(s+11.9893±j 20.2778)(s+20)(s+42.021)

(V-45)

Templates are drawn on the Nichols chart by plotting the Log-magnitude and angle of

the frequency response at the chosen design frequencies (Table V-3) for the three flight
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conditions. Recall from Chapter 11, the templates are a plot of the range of uncertainty in

the effective plant qn1 (jo)*. The resulting templates are shown in Figure V-11. Note the

nominal point on the templates lies at the bottom corner. As observed in Figure G-I of

Appendix G, the frequency response of q1 i0(Jo)* is nearly the same as q11 1(jto)* for

frequencies greater than o = 1. This resulted in the nominal point being essentially the

same as the q1 l(joo)* point on the templates for co > 1 given the small template shapes.

Table V-3. Pitch Rate Loop Design Frequencies (Radians/Second)

0.2 2.0 14.0 100.0
0.4 4.0 17.0 200.0
0.5 8.0 20.0 500.0
1.0 10.0 50.0 1000.0

o 0 0 .2 o 0 .4  o1 - '
(D0.5

00

0IdB

2 ra 4 o}8 . .=10 _w=14_ o=17 0 dB

0

:_ -O -lOdB1 I

co=20 o=50 co=200 o 1000

Fig. V-i1. Effective Plant q l(Jco)* Templates on the Nichols Chart
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Bounds B10(j0i)* on l1l0(oi)* are constructed on the Nichols chart using the plant

templates while satisfying the closed-loop response tolerances defined by Equation (V-46).

The response bound transfer functions aI(s) and bII(s) are given by Equations (V-17) and

(V-18) respectively.

lallo"m)l <Itll(,o"il<IiJ)l (V-46)

Figure V-12 shows the B10(Jcoi)* bounds constructed on the Nichols chart. The nominal

l0(j0c)* shaped to meet the bounds is also shown in the figure. The nominal loop

transmission transfer function li0(s)* resulting from the shaping problem is given by

Equation (V-47).

2650(s + 3.50)
ll0(S)* = (V-47)(s + 0.11)(s + 7.07 ± j7.07)(s + 100)

From Equation (V-43), dividing li0(s)* by the nominal effective plant qI1 0 (s)* provides

the pitch rate loop compensator gl(s):

4410.76(s+0.802)(s+3.5)(s+3.8559-jO.4836)(s+l 1.9893±j20.2778)(s+20)(s+42)
g1(s) =

(s+0.0007)(s+O. 11)(s+3.995)(s+7.07i-j7.07)(s+1 5.76±j21.99)(s+35.74)(s+100)

(V-48)

The complexity of gl(s) can be reduced to that shown in Equation (V-49) by eliminating

pole-zero pairs which have a non-dominant effect on the Log-magnitude of the frequency

response, Lm[gl(jc)I.

3443.399(s + 0.802)(s + 3.856 ± jO.484)(s + 20)
g1(s) = (V-49)

(s + 0.007)(s + 0.1 1)(s + 4)(s + 7.07 ± 7.07)(s + 100)

The final step is to design the prefilter f1 1. Prefilter bounds are drawn on a Bode plot

following the procedure described in Chapter H1. A transfer function is shaped to lie within

the bounds as shown in Figure V-13. The resulting prefilter design is given by Equation

(V-50).

0.2348(s + 10)(s + 12.4)(s +20)
f11(s) = (V-50)

(s + 1.885 ± j2.6475)(s + 4)(s + 12)

V- 26



FREQUENCT BOUNDS ON F

-0
"-

L)

-20-

,o:0-

I-5 10- i 3 i 0 e ~ 0 3 £ 5 6 8 9 102
FREQUENCY (RqD/SEC)

Fig. V-13. Frequency Bounds on the Prefilter, f1 (o).

Summary

This chapter presents the design steps used to solve a MIMO compensation problem.

The improved QFT technique is applied to obtain a pitch pointing controller design for the

AFTI/F-16 aircraft. The two-by-two MIMO design problem is broken into two equivalent

MISO design problems, the solution of which guarantees the solution to the MIMO

problem. The individual compensator elements found are inserted into the system diagram

of Figure V-2, resulting in the pitch pointing controller.

The controller design must be verified at each flight condition. Chapter VI presents

the design results and the digital simulations of the system response.
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VI. Design Results and Computer Simulations

Introduction

The resulting compensators designed using the QFT technique and computer

simulations of the system response are presented in this chapter. The transfer functions of

the shaped loop transmissions and the corresponding G compensator matrix elements are

given along with the prefilter F. The single set of compensator elements obtained is

applied to the aircraft model at each flight condition. Computer simulations of the system's

response are provided using the software package, TOTAL, to verify the design met the

specified requirements.

Design Results

The nominal loop transmission shaped for the acceleration loop is 120(s). The

corresponding compensator obtained is g2(s). The nominal loop transmission shaped for

the pitch rate loop is li0(s)* resulting with the compensator gl(s). The transfer functions

for these relationships and the prefilter f 1 (s) are given below.

7.65036 x 1012(s + 0.001)(s + 0.02)(s + 4.1)(s + 13)(s + 130)
120(s) -- (VI- 1)

(s - 0.009)(s + O.09)(s + 2)2(s - 4.1)(s + 510 ± j680)2 (s + 60)

-4.842 x 1010(s + 0.025)(s + 4)(s + 4.1)(s + 13)(s + 20)(s + 130)
g2(s) = (VI-2)

(s)(s + 2)(s + 2)(s + 0.09)(s + 60)(s + 510 ±j680)(s + 510 ±j680)

2650(s + 3.50)
li0(S)* = (VI-3)

(s + 0.11)(s + 7.07 ± j7.07)(s + 100)

3443.399(s + 0.802)(s + 3.856 ± jO.484)(s + 20)
gl(s) = (VI-4)

(s + 0.007)(s + 0.11)(s + 4)(s + 7.07 ± 7.07)(s + 100)

0.2348(s + 10)(s + 12.4)(S +20)
f1l1(s) = (VI-5)

(s + 1.885 ± j2.6475)(s + 4)(s + 12)

VI- I



The bandwidth of the compensation in the feedback loop is important due to noise

considerations. The nominal loop transmission and loop compensator bandwidths are

listed in Table VI-1. For this study, the bandwidth (i.e. the phase margin frequency) of

a function is defined as the frequency, in units of radians/second, where the magnitude of

the frequency response of li0(jo) is equal to one (0 dB).

Table VI-1. Loop and Compensator Bandwidths

Function Bandwidth

l10(s)* 0.95 r/s

gl(s) 37.5 r/s

120(s) 36.0 r/s

g2 (s) 3680.0 r/s

Frequency response plots of the nominal loop transmissions and the compensators

are provided on the following pages.
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Computer Simulation of the Controller Design

Verification of the controller design is necessary to determine if the system perfor-

mance meets the desired response specifications over the range of flight conditions. To

verify the design, the control laws are applied to the plant at each flight condition and the

system time response is observed for a given input. To obtain the closed-loop transfer

functions for the two system outputs due to the command input, the compensator elements

g1, g2 , and f I are inserted into the system diagram of Figure V-2. Recall f21 and r2 equal

zero. Mason's Gain Rule (Ref 5:162-164) is then applied to the system. The transfer

functions for the plant inputs due to the command input are found similarly. The derivation

of these relationships is given in Appendix J. The closed-loop system transfer functions

are constructed for each flight condition using a macro routine on the computer-

aided-design package, TOTAL. Note the same compensation is used for each case.

To evaluate the pitch pointing controller design, the time responses to a 1 deg/sec step

input command in pitch rate are found for each flight condition using TOTAL. In addition,

a 1 deg/sec pulse input in pitc0 rate is applied for 2 seconds to the 0.9 Mach, 20,000 feet

condition to observe a step response in pitch. Plots of the system response are presented

on the following pages. A discussion of the performance results follow the figures.
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System Time Response for the Pitch Pointing Maneuver

Case 1: 0.6 Mach, 30,000 Feet

qCCELERRTION RESPONSE - q: CASE I

0.00

............ ..... . ........ ....

-.. t. S.c . c5 c 9 0. .c

0.0 CCO Z C 3.CC 4,CC , S ,CC 3 CC .CC 9.0" 1CC
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Fig. VI-6. System Response - Pitch Pointing Controller Design Acceleration Response to
a 1 deg/sec Step Command in Pitch Rate
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Fig. VI-7. System Response - Pitch Pointing Controller Design Pitch Rate Response to a 1
deg/scc Step Command in Pitch Rate
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Fig. VI-8. System Response - Pitch Pointing Controller Design Pitch Response to a I
deg/sec Step Command in Pitch Rate
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Fig. VI-10. System Response - Pitch Pointing Controller Design Flap Command

Response to a 1 deg/sec Step Command in Pitch Rate

System Time Response for the Pitch Pointing Maneuver

Case 2: 0.9 Mach, 20,000 Feet
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Fig. V- 11. System Response - Pitch Pointing Controller Design Acceleration Response to

a I deg/sec Step Command in Pitch Rate
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Fig. VI-12. System Response - Pitch Pointing Controller Design Pitch Rate Response to a
1 deg/sec Step Command in Pitch Rate
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Fig. VI- 13. System Response - Pitch Pointing Controller Design Pitch Response to a 1
deg/sec Step Command in Pitch Rate
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Fig. V1-16. System Response - Pitch Pointing Controller Design Pitch Rate Response to a
1 deg/sec Pulse Command in Pitch Rate, Pulse Length of 2 seconds
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Fig. VI-17. System Response - Pitch Pointing Controller Design Pitch Response to a 1
deg/sec Pulse Command in Pitch Rate, Pulse Length of 2 seconds.
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System Time Response for the Pitch Pointing Maneuver

Case 3: 1.6 Mach, 30,000 Feet
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Fig. VI-18. System Response - Pitch Pointing Controller Design Acceleration Response to
a 1 deg/sec Step Command in Pitch Rate
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Fig. VI- 19. System Response - Pitch Pointing Controller Design Pitch Rate Response to a
1 deg/sec Step Command in Pitch Rate
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Fig. VI-20. System Response - Pitch Pointing Controller Design Pitch Response to a 1
deg/sec Step Command in Pitch Rate
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Fig. VI-22. System Response - Pitch Pointing Controller Design Flap Command
Response to a 1 deg/sec Step Command in Pitch Rate

Discussion

The preceding figures are obtained using the same compensation for all three flight

conditions. In all cases, control and stability are achieved. The acceleration response- is

maintained well below the acceleration time response performance specification of Figure

V-6. In Cases 1 and 2, an initial acceleration transient is present which may appear to be

undesirable, however the peak magnitude of the transient is well below the design

specification and would be imperceptible to the pilot. Pitch rate response is smooth and

well behaved in all cases. The pitch rate response results are somewhat overdamped, in

proximity of the lower, a,1I, pitch rate time response bound of Figure V-5. The use of a

diagonal G compensator matrix is readily evident by observing the elevator and flap input

command responses. Pitch rate commands dominate the elevator command input while

flap command inputs are minimal. Elevator and flap command responses are smooth and

well behaved. Surface rate limits are not exceeded, however elevator position limits are

VI - 14
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exceeded between 1 and 2 seconds. Surface position limits were not directly incorporated

in the preliminary design due to the limited scope of this effort.

Loop and compensator bandwidths are reasonable except for the acceleration loop

compensator g2 . This bandwidth is large due to the large plant uncertainty at high

frequencies. This uncertainty is evident by observing the magnitude difference between the

maximum and minimum plant frequency responses as co approaches infinity, see Figure

F-4. Note at high frequency, over 20 dB of uncertainty exists between the maximum and

minimum frequency responses (Cases 3 and 1 respectively). This large uncertainty

manifests itself in the large UHF bound of the acceleration loop transmission problem,

Figure V-9. Additionally, the o = 2 and (o = 4 bounds dominate the shaping problem due

to the stringent design specifications of bl1 . A complex compensator having large

bandwidth is required to overcome the plant uncertainty or risk not achieving the design

specifications.

VI - 15
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VII. Conclusions and Recommendations

Conclusions

The QFT design method provides a number of advantages over other design

methods. A major benefit is the solution of a multiple input - multiple output control

problem with plant uncertainty by solving an equivalent set of multiple input - single output

control problems with plant uncertainty and disturbance inputs. Another benefit is the

non-iterative nature of the design technique. The solution of each MISO loop is

accomplished once, the solutions of which guarantee the solution of the MIMO system

considered here. A single MIMO controller design is produced having robust stability and

control margins over the range of flight conditions.

The design tradeoffs are readily apparent to the designer during the design procedure,

particularly in terms of design complexity versus economy in bandwidth. As previously

observed in the Discussion section of Chapter VI, the acceleration loop desi. -- was driven

by large high frequency uncertainty in addition to stringent design specifications on the

pitch rate response. Various tradeoffs are available but could not be explored here. For

example, the design method inherently has some overdesign in the first loop. The result of

the overdesign is observed in the acceleration responses of Chapter VI being well below the

design specification. An alternative would be to design the pitch rate loop first, however

this would require simultaneous solution of a disturbance rejection and command response

problem, increasing the design effort required to obtain the control laws. Another

alternative would be the use of scheduling to reduce the high frequency uncertainty of the

plant. Referring again to Figure F-4, separate designs could be done by pairing Cases 2

and 3 while handling Case 1 separately. This would greatly reduce the high frequency

uncertainty, from 20 dB to less than 10 dB, simplifying the shaping problem and reducing

the acceleration loop compensator bandwidth. An acceleration loop compensator could be

designed optimally placing the loop transmission frequency response on or just above each

respective bound, however the extreme complexity of such a design is readily obvious.
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Recommendations

This study provides a starting point for comparison of different control system design

techniques. The design method used for this research is relatively new and contains dis-

tinct benefits for Air Force control system applications. Continued research and applica-

tion of the design method is strongly recommended for the AFTI/F- 16 vehicle. Particular

areas worthy of further research include the use of off-diagonal G matrix compensator

elements to reduce elevator deflection demand, incorporation of plant input amplitude and

rate limits in the design process, and scheduling to reduce high frequency gain uncertainty.

The design method permits a large region of plant uncertainty to be controlled by a single

compensator design, thus larger groups of flight conditions should be considered in future

design problems.

As this thesis represents a first application of the design method, a majority of the

design effort required plotting of bounds and shaping the loop transmissions on the

Nichols chart by hand. This greatly extended the time required to execute the design

method and limited exploration of various design tradeoffs. Computer automation of

bound calculation, Nichols chart plotting, and user interactive loop transmission shaping is

recommended to fully explore the benefits of the design method. The program TOTAL

would provide a starting point for a interactive user workstation.

Complex system models and compensator designs can result in very high order

polynomials comprising the various transfer functions used in applying the technique.

Polynomial root solving errors quickly arose when executing math operations on transfer

functions using TOTAL. The root solving algorithms in TOTAL should be enhanced to

reduce errors incurred with very high order polynomials.
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Apptndix A

Loop Shaping Examples

Introduction

This appendix presents two examples of loop shaping. These examples are included

to assist in understanding the concept of shaping a nominal loop transmission and the basic

fundamentals of the single loop design process. The materials are reproduced with

permission from Dr. Horowitz.

The first example is a numerical analysis of a loop shaping problem. The primary

concepts required for shaping a nominal loop transmission are given.

The second design example demonstrates the main features of the single loop control

problem. Template construction, nominal loop shaping, and solution for the compen-

sators, G and F, are presented.
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Example: Shaping of a nominal loop transmission LO(j) Io satisfy

boundaries B(w) on Nichols Chart.

Previous notes have described how tolerances on the closed-loop system

frequency response are readily translated into bounds on a nominal loop

transmission function LO (j). In Fig. 1, for example, L0 (J2) must be on

or above the curve labelled B(2), etc.. Bh is the "universal high-frequency

boundary" applicable, in this example, to w) w hm4O, i.e. L0 (J) (for w,>40)

must be contained in the closed curve Bh in Fig. 1. Additional specifica-

tion is eL-4, where eL is excess of poles over zeros of L (S). Also, LO is

to be Type 1 (one pole at the origin). We proceed to describe a reasonable

procedure for choosing a rational function L0 (s) which satisfies the above

specifications.

In our first step, we try to find the B(w) which "dominates".Lo(JW).

E.g. suppose L0 1 (J4)=Odb/-135* (point A in Fig. 1). But at w=l, IL0(J)

needed is =27db. In order to 'decrease JLo0 from 27db to about 0db in 2

octaves (41-2 2), the slope of ILo(jw) would have to be, on the average,

about -14db/octave, involving L,<-1 8 0 *. We assume "absolute" stability

is required here for L0 (jw) with a margin of 40, not just at crossover

("crossover" is defined as the frequency at which IL 0 0)I-). Hence B(1)

dominates L0 (jw), at least more than B(4). In the same way we see that

B() dominates over all other B(w) in Fig. I.

The B(w) for w<l are not shown in Fig. 1. We shall assume that for

w<l, a slope of -6 db/octave (with 27db at w-l, i.e. 33 db at w-.5, 39db

at wv-.25 etc.), suffices. We can tolerate =-140* for w)1, so we choose a

lag corner frequency (symbol lacf) at w-1 (i.e. pole at -1), and set

IL(j01) (asymptotic) at 30 db (to allow for the -3db correction). Thus

our L0 is so far: L0 1-31.6/s(s+l),.whose phase /L0 1 (jw) is sketched in

Fig. 2.



L01(Ju) violates the -140' bound at W>1.2 , so a lead corner frequency

(symbol lecf) is needed. Where should it be located? At w-5, /L 0 1 (j5)--169*

(see Fig. 2), so 29' lead is needed; but we know that later there will be

a second lacf, so allow say additional 15* for it giving 15+29-45* lead

required at W-5; which is achieved by a lecf at w-5 i.e. a zero at -5.

The resulting Lo 2 (s)-31.6(l+ -), whose phase Lo2 (Jul) is sketched in Fig. 2.

s(l+s)

iu the Nichols Chart (N.C.) we are (-10 or so) in the region where- the

maximum phase lag allowed is 135* (i.e. /Lo(Qiw) must be >,-135*). Consider

ea10, with present /L 0 2(Jw) -112, so 135°-I12°=23* more lag is allowed.

But this lacf will be followed by a lecf, so allow say 100 for it, giving

230+10°=330 more lag allowable. This locates the lacef at 15.4 (tan33*-.65,

and 10/.65=15.4), so we set the lacf at w=-15 (i.e. pole at -15), giving

L 3(s)=31.6(l+.2s) . L03 (N) is sketched in Fig. 2.

s(l+s) (+ s

Looking ahead at w-40, I L0 3 (J40)I = -20db, so soon L0 (J G) can make its

asymptotic left turn under the Bh boundary. Our plan is to add two more

lecfs, and finally two complex pole pairs, in order to have an excess eL

of poles over zeros of 4. We try one lecf at ui=40, giving

31.6(1+.2s) (1+ ) /
4(s)- 40 . /L0 4 (jw) is sketched in Fig. 2.

s (l+s) (1+ - )

We're ready now for the last lecf, in order to achieve (an asymptotic)

horizontal segment for ILo(Jw)I , before the final -24db/octave slope.

(We follow Bode in this respect, a good master to follow.) Where should

this horizontal segment be located? The bottom of Bh (see Fig. 1) is at

-22.5db. Allow 2db margin, 3db correction due to the last leef, 1.5db for

the effect of the lecf at i-40, giving a total of -(22.5+2+3+1.5)--29db.

We'll use a damping factor of C-.6 for the 2 complex pole pairs, so no



correction need be allowed for them. Thus the final breaK for IL0(ow)I

asymptotic is to be at -29db, which IL04( )I achieves at wi60. Hence,

the last lecf is at w-60. The resulting phase due to L04 and the lecf at

w=60, is -66*. We could have -180* at this point, but we'll allow an additional

150 margin (a matter of taste; it depends on the problem -- presence of

higher order modes, etc). This means 1000 phase lag is permitted, 500 due

to each complex pole pair (180-66-15=100). For C.6, this locates them at 100.

Thus L0 (s) -34.6(0+.2s)(+60)(+

s(l+s) (+ _5) [I+ + 1 +
15 100 1

Discussion

L0 (jw) is sketched in Fig. 1. A well-designed, i.e. "economical" L0(0W)

is close to its boundary B(w) at each w. The vertical line -J40* is the

dominating B(w) for w<5 and the right side of Bh (line -1350) is the boundary

effectively for 5(w 30; so our L0 (jw) is pretty good in this respect since

it is pretty close to these boundaries. There is tradeoff between complexity

of Lo(s) (number of its poles and zeros) and its final cut-off frequency, now0I
at w-100. There is some phase to spare between L0 (jw) and the boundaries. so

use of more poles and zeros in L0 (s) would permit this cut-off frequency to

be reduced a bit below 100, but not by much. On the other hand, if we want to

redude the number of poles and zeros of L (s), we must pay the price in a

larger cut-off frequency. We could economize significantly, of course,

by allowing more phase lag in the low frequency range. If -180* was permitted

at ul, we could decrease IL0(jw)I at a rate 6f 12db/octave; so with JLoI.

25db at w-l, it iuould be 13db at w-2 (instead of the present 18db). Even

with no more saving, this 5db difference, would allow a cut-off frequency

at about 70 instead of 100.



Also, Fig. . reveals (immediately, without any shaping of L0 required)

that reduction (i.e. easing) of the specifications at w1 to about 21db

(instead of =26db), would have the same effect as the above. One can check

how badly the specifications are compromised by such easing. The design

technique is thus highly "transparent" in revealing the trade-offs between

performance tolerances, complexity of the compensation, stability margins,

and the "cost of feedback" in bandwidth.
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DESIGN EXAMPLE: Uncertain Plant P- k
s(s+p).

k: [10,80), p: [-2,21.

Note: For part of range of p, plant is unstable.

Specifications on IT(jw)l. (see Fig. A)

0 .5 1 2 5 10 EXCESS eL OF POLES

-AX(DB) 0 1.3 1 -6 -17 -33 OVER ZEROS OF L, IS 3.

MIN(DB) 0 -2 -7 -19 -35 -65 ALSO11L_ 3DB. FORAL
(A TI)MAX 0 3.3 8 13 18 32 [I+LF

W&P.

N.B. At high w, (AITI)MAX MUST BE > IAPIMAX. OK.

Step 1 Calculation and Construction of Plant Templates {P(jw)}=

The templates are shown in Fig. B1 . It suffices to calculate (at a

fixed w) several values of l/jw(jw+p), i.e. at different p values. This

gives the bottom curve of the template. Then extend vertically by

18db(80/l0=8; 201og818).

Step 2 Use the procedure described in the notes (p.17 etc) to find bounds

on L0 (jw) in order to satisfy the specifications on IT(Jw)I. A nominal plant

must be chosen; p-2, kl was chosen as nominal and marked heavily in Fig. B2.

(It helps to have the templates on transparent paper or plastic.) Already

at w-l, the bound on L0 (J), denoted by B(l) is determined by IL/(1+L)I,<3DB,

rather than by the constraints on IT(j)t. And this is so for w>l also,

which is not typical for stable plants but more likely for plants which can

be open-loop unstable for part of the parameter range.



Shaping of L0 (jW)

The boundary at W- 2 dominates, i.e. determines the level of IL 0I at

w- 2 to be =10db. The boundary at hi=5 determines the phase there to be

=-850or so. This necessitates a lead corner frequency at some w<5. This

was chosen to be at 1 and lags introduced thereafter such that at w=5 the

phase > -850; they were chosen at 5 and 8 (see Figs. B2,C). A lecf is then

needed to be followed by a complex pole pair with g-0.6. The corner below

the high-frequency bound can be turned when ILl is = -25db. If we try a lecf

at 40, then phase requirements at W=2 0 force the final cut-off frequency to be

well beyond thewvalue at which ILo1 =-25db. A lecf at =25 gives compat-

ibility of phase needs at w- 2 0 and turning the corner when ILoI permits it.

This gives 100 as the frequency at which the final complex pole pair can be

inserted., This gives Lo(s)- 4(l+s) (+ -1)

s(l+.2s)(l+ A)[l+ -2s + (s ) 2
8 100 100

=GP. = G(s) , giving G(s), -- see Figs. B2 , C.
s(s+2)

Finding F(s)

The proper G guarantees thatAITI does not exceed those allowed. The

next step is to find the range of IL(Ji,,)/(l+L(JA) I. Place the template of

the plant at w-5 (for example) on the point L0 (J5) in the Nichols Chart,

i.e. on 5db /-82* and it is seen that IL/(l+L) I max= 2.4db, min -1.7db.

But the specifications require ITI-IFL/(l+L)ICf-35, -17] db. Therefore, it

is required that: -33.3db<IFI.-l9.4db. In this way we obtain the bounds

onIF(JW)t shown in Fig. D. It is easy to find an F(s) which satisfies

these bounds, e.g. F(s) - 1

(s+l)(1+ (1+ ).
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Appendix B

Longitudinal State Space Data

Introduction

The linear perturbation state space model describing the AFTIIF- 16 was developed by

A. Finley Barfield. The synthesis of the model and the aerodynamic data for the aircraft are

provided in Chapter 2 and Appendices A and B of reference 2.

Definition of the State Space Model

The linear perturbation state space model used to describe the AFTI is of the form:

x = Ax + Bu (B-1)

y =Cx (B-2)

where the longitudinal state vector x, defined in Chapter IV, is given by:

0X

0

u

x = Anps + kI8 e + k28f (B-3)

q

8e

and the output state vector y and the input state vector u are given by:

y = u = I (B-4)
q I cmd

The constants k, and k2 of x and the state space data for the matrices A, B, and C, are

given on the following pages for each flight condition. Recall that the control inputs Becmd

and 8fcmd refer to the actuator input signals in this and following appendices.

B-I



Table B-1. State Space Data for Case 1: 0.6 Mach; 30,000 Feet

A Matrix Data:

0.0 -4.418E-3 -1.035E-3 -2.779 9.925E- 1 6.615E-2 -. l7E-l

0,0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 -5.601E-1 -9,114E-3 2.123 -8.495E-2 5.533E-2 -3.660E-2
0.0 -1.885E-3 -. 1390E-4 5,48E-1 1.869E-l -2.640E-3 -2.064E-2
0.0 2812E-4 1.429E-2 1.334E+I -3.196E-1 -5.862 -2.116E-I

0.0 0.0 0.0 0.0 0.0 -20.00E+l 0.0

0.0 0.0 0.0 0.0 0.0 0.0 -2,000E+l

B Matrix Data: C Matrix Data:

0.0 0.0 0.0 0.0 0.0 1.0 0.0 -2.29207E-2 3.45517E-2

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 kI = 2.29207E-2

0.0 0.0
0.0 0.0 k2 = -3.45547E-2

2.OE+l 0.0
0.0 2.OE+l

Table B-2. State Space Data for Case 2: 0.9 Mach; 20,000 Feet

A Matrix Data:

0.0 -1.123E-3 -1.596E-4 -1.896 90886E-l -1.492E- 2.449E-

0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 -5,617E-1 -1.258E-2 8.522E-1 -5.232E-1 3.492E-2 4.030E-2
0.0 -5.211E-3 -9.782E-5 -1.502 7.764E-I -3.891E-2 -1.706E-1

0.0 3.213E-4 -1.068E-2 5.455 7.595E-1 -2,406E+1 -6.473

0.0 0.0 0.0 0.0 0.0 -2,00E+1 0.0

0.0 0.0 0.0 0.0 0.0 0.0 -2,000E4l

B Mat, x Data: C Matrix Data:

0.0 0.0 0.0 0.0 0.0 1.0 0.0 -1.064E-1 7,496E-2

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 ki = 1.064E-1
0.0 0.0
0.0 0.0 k2 = -7.496E-2
2.0E+ 1 0.0
0.0 2.OE+l

-2



Table B-3. State Space Data for Case 3: 1.6 Mach; 30,000 Feet

A Matrix Data:

0.0 -5.944E-4 6.413E-4 -1.672 9.973E-I -1.153E-2 -7.509E-2
0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 -5.617E-1 -3.054E-2 1.054 -8.126E-1 1.641E-1 -2.321E-1
0.0 -7.057E-4 5.240E-4 -1.297 7.455E-1 -1.125E-1 -6.093E-2
0.0 -1.087E-4 7.318E-2 -5.855E+1 -3.050E+1 -3.289E+1 -5.850
0.0 0.0 0.0 0.0 0.0 -2.OOOE+l 0.0
0.0 0.0 0.0 0.0 0.0 0.0 -2.OOOE+ I

B Matrix Data: C Matrix Data:

0.0 0.0 0.0 0.0 0.0 1.0 0.0 -1.49182E-1 2.0547E-2
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0
0.0 0.0 k1 = 1.49182E-1
0.0 0.0
2.OE+l 0.0 k2 = -2.0547E-2
0.0 2.OE+l
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Appendix Q

Plant Tranfer Functions

Introduction

The plant transfer functions relating the output variables to the input variables are

obtained from the state space model using Equation (11-7), repeated below.

P = C[sI - A]-IB (C-I)

The input/output transfer function relationships are written in matrix form as:

y = Pu (C-2)

In terms of the various matrix elements, this relationship is written as:

Apsl = I P11 P12 i ed cmd (C-3)

[AqS - P21P2JL fn

where:

[ Anps ] [ Anps ]
P11 - P12 -[ 8 ecmdl] [' fcmd ]

(C-4)
[q ][q ]

P21 - ecmd P22 -=d

The plant transfer function matrix, P, is obtained for each flight condition using a

computer program. The P matrices are tested to determine if the constraints on the

two-by-two system are met. Recall from Chapter m, the two conditions are:

1. P must not be singular for any possible combination of plant parameters,

i.e. P- 1 must exist.
2. As s -> 00, lPlIP221 > IP12P21 1 for all possible plants.

The transfer functions and the results of the constraint tests are given on the following

pages for the three flight conditions of this study.

C-1



Case 1: 0.6 Mach; 30,000 Feet

-0.458414(s + 0.006431)(s - 0.006991)(s + 4946 ± j6.7265)
pny(s) =

(s + 0.006473 ± jO.07802)(s - 1.167)(s + 2.0276)(s + 20)

0.691034(s + 0.0006424 ± jO.006178)(s + 2.0645)(s - 1.7871)
P12(s) =

(s + 0.006473 ± jO.07802)(s - 1.167)(s + 2.0276)(s + 20)

(C-5)
-117.24(s)(s + 0.010028)(s + 0.5503)

P21(S) = (s + 0.006473 ±jO.07802)(s - 1.167)(s + 2.0276)(s + 20)

-4.232(s)(s + 0.001887)(s + 1.8456)
P22(s) =

(s + 0.006473 ± jO.07802)(s - 1.167)(s + 2.0276)(s + 20)

The results of testing P against the constraints for Case I are:

1. P is non-singular.

2. As s ->oo, IPIIP22 1> IP12P2 11becomes: 1.94 > 81.016

Constraint 2 is not met for Case 1.

Case 2: 0.9 Mach; 20,000 Feet

-2.128(s + 0.012228)(s - 0.001170)(s + 1.3144 ± j 13 .07 744 )
Pl 1(s) =

(s + 0.0075694 ± jO.0540)(s - 0.96451)(s + 3.2234)(s + 20)

1.4992(s + 0.0122185)(s - 0.00113786)(s - 8.48425)(s + 8.4714)
Pi2(S) =

(s + 0.0075694 ± jO.0540)(s - 0.96451)(s + 3.2234)(s + 20)

(C-6)
-481.2(s)(s + 0.012642)(s + 1.510776)

P21(s) =
(s + 0.0075694 ± jO.0540)(s - 0.96451)(s + 3.2234)(s + 20)

-129.46(s)(s + 0.012548)(s + 1.64587)
P22(s) =

(s + 0.0075694 ± jO.0540)(s - 0.96451)(s + 3.2234)(s + 20)
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The results of testing P against the constraints for Case 2 are:

1. P is non-singular.

2. As s -> oo, IP11P22 1 > iP12P211 becomes: 275.5 > 721.4

Constraint 2 is not met for Case 2.

Case 3: 1.6 Mach; 30,000 Feet

-2.9836(s - 0.0005956)(s + 0.02983)(s + 1.1787 ± j14.398)
Pll(S) =

(s + 0.01517 ±jO.02368)(s + 0.8011 ±j6.5925)(s + 20)

0.61094(s - 0.00060805)(s + 0.033987)(s + 12.337)(s - 13.7033)
P12(s) =

(s + 0.01517 ± jO.02368)(s + 0.8011 ± j6.5925)(s + 20)

(C-7)
-657.8(s)(s + 0.029979)(s + 1.096926)

P21(s) =
(s + 0.01517 ± jO.02368)(s + 0.8011± j6.5925)(s + 20)

-117.0(s)(s + 0.034674)(s + 0.68595)
P22(s) =

(s + 0.01517 ± jO.02368)(s + 0.8011±_j6.5925)(s + 20)

The results of testing P against the constraints for Case 3 are:

1. P is non-singular.

2. As s -> oo, IP1P221 > IP12P21 1 becomes: 349.1 > 401.9

Constraint 2 is not met for Case 3.
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Apendix D

Rearrange the Output Vector to Meet Constraints

Introduction

The constraints on the P matrix must be met in order to apply the Quantitative

Synthesis Technique (see Chapter 111). If the constraints are met, the MIMO systen can be

broken into a set of equivalent MISO systems.

Rearrange the Output Vector

Constraint 2 was not met for all three flight conditions as shown in Appendix C.

Chapter V described the method to rearrange the elements of the output vector, y, in order

to meet Constraint 2. The modified relationship between the input and output variables is

repeated below where y = Pu:

Aq i s11 P121 [ lecmdl D
[Apj = ~ P1I(D-l)Anps P21 P22. kfmd.

The output vector, y, is redefined as:

y = (D-2)
Anps

and the P matrix elements are given by:
[ q ][q ]

p11 = P12 = [fcmd11 [ ecmd I fm

(D-3)
Anps ][Anps]

P21 - P22 =[ 8ecmd ] [ 8fcmd ]

As described in Chapter V, the affect of rearranging the output vector on the P matrix

elements, Pij, is easily observed by simply changing the subscripts of the pij elements from
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the old set to the new set as shown in Table V-1 and repeated in Table D-1 below for

convenience.

Table D-1. Plant Transfer Function Subscript Change

Subscript Value

11 21

12 22

21 11

22 12

The transfer functions obtained after performing the transformations on the output

vector are given on the following pages for each flight condition. The constraints on the P

matrix are checked again for the revised set of transfer functions.

Case 1: 0.6 Mach; 30,000 Feet
-117.24(s)(s + 0.010028)(s + 0.5503)

Pll(S) = (s + 0.006473 ± jO.07802)(s - 1.167)(s + 2.0276)(s + 20)

-4.232(s)(s + 0.00187)(s + 1.8456)
P12(s) = (s + 0.006473 ±jO.07802)(s - 1.167)(s + 2.0276)(s + 20)

(D-4)
-0.458414(s + 0.006431)(s - 0.006991)(s + 0.4946 ± j6.7265)

P21(s) =
(s + 0.006473 ± jO.07802)(s - 1.167)(s + 2.0276)(s + 20)

0.691034(s + 0.006424 ± j0.006178)(s + 2.0645)(s - 1.787 1)
P22 (s)=

(s + 0.006473 ± jO.07802)(s - 1.167)(s + 2.0276)(s + 20)

The results of testing P against the constraints for Case 1 are:

1. P is non-singular.

2. As s -> co, Ip11P221 > Ip12P211 becomes: 81.0 > 1.94

Both constraints are met for Case 1.
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Case 2: 0.9 Mach; 20,000 Feet

-481.2(s)(s + 0.012642)(s + 1.510776)
Pl 1(s) (s + 0.0075694 ±jO.0540)(s - 0.96451)(s + 3,2234)(s + 20)

-129.46(s)(s + 0.012548)(s + 1.64587)
P 12(S) = (s + 0.0075694 ±jO.0540)(s - 0.96451)(s + 3.2234)(s + 20)

(D-5)
-2.128(s + 0.012228)(s - 0.001170)(s + 1.3144 ± j13.07744)

P21 (S) =
(s + 0.0075694 ±jO.0540)(s - 0.96451)(s + 3.2234)(s + 20)

1.4992(s + 0.0122185)(s - 0.00113786)(s - 8.48425)(s + 8.4714)
P22(s) =

(s + 0.0075694 ± jO.0540)(s - 0.96451)(s + 3.2234)(s + 20)

The results of testing P against the constraints for Case 2 are:

1. P is non-singular.

2. As s -> oo, IN PP221 > IP12P21I becomes: 721.4 > 275.5

Both constraints are met for Case 2.

Case 3: 1.6 Mach; 30,000 Feet

-657.8(s)(s + 0.029979)(s + 1.096926)
P11(s) =

(s + 0.01517 ± jO.02368)(s + 0.8011 ± j6.5925)(s + 20)

-117.0(s)(s + 0.034674)(s + 0.68595)
Pi2(S)=

(s + 0.01517 ± jO.02368)(s + 0.8011 ± j6.5925)(s + 20)

(D-6)

-2.9836(s - 0.0005956)(s + 0.02983)(s + 1.1787 ± j14.398)
P2I (S) =  (s + 0.01517 ± jO.02368)(s + 0.8011 ± j6.5925)(s + 20)

0.61094(s - 0.00060805)(s + 0.033987)(s + 12.337)(s - 13.7033)
P22(s) = (s + 0.01517 ± j0.02368)(s + 0.8011 ±j65925)(s + 20)
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The results of testing P against the constraints for Case 3 are:

1. P is non-singular.

2. As s-> oo, IPl1P221 > Ip12p21' becomes: 401.9 >349.1

Both constraints are met for Case 3.
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Appndix E

Derivation of the Q Matrix

Introduction

The MIMO system can be broken into an equivalent set of MISO systems as stated in

Chapter 1H with a corresponding proof and derivation in reference 9. The equivalent MISO

set is obtained from the reciprocal of the elements on the inverse plant matrix.

The 0 Matrix

The equivalent MISO set of transfer functions describing the MIMO system are

obtained form the P-I matrix. This set, in matrix form, is defined as:

Q = (E- 1)Lq2I 22

where:

det [P]
qijk = I, k = flight condition (E-2)

Note the elements of Q are the reciprocals of the P-I matrix.

A computer program is uoed to obtain the qjj's for each flight condition. The sets of

qjj's are listed below.

Case 1: 0.6 Mach; 30,000 Feet

0.707581(s + 0.00486676 ±jO.006373737)
qII 1 (s) =

(s + 0.010028)(s + 0.550313)(s + 20)

(E-3)
-180.96487(s)(s + 0.00486676 ± jO.006373737)

q121(s) =
(s - 0.0069911)(s + 0.006431)(s + 0.49463 ± j6.72646)(s + 20)
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- 19.602276(s + 0.00486676 ± jO.006373737)
q2 l I(S) = ___________ ____

(s + 0.00188663)(s + 1.845599)(s + 20)

(E-3)
-120.047393(s)(s + 0.00486676 ± jO.006373737)

q22 (S =(s - 0.00064239 ± jO.0061777)(s - 1.787 1)(s + 2.06449)(s + 20)

Case 2: 0.9 Mach; 20,000 Feet

2.07171(s + 0.0027369)(s + 0.0121827)

q, 1 2(s) =
(s + 0.01264 22)(s + 1.5 10776)(s + 20)

-468.47082(s)(s + 0.0027369)(s + 0.0121827)

q 12(S) (s - 0.001 17)(s + 0.012228)(s + 1.3 1436 ±j13.077)(s + 20)

(E-4)
-7.700494(s + 0.0027369)(s + 0.012 1827)

q2 1 2(s) = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

(s + 0.0 125478)(s + 1.64587)(s + 20)

-664.9586(s)(s + 0.0027369)(s + 0.0121827)
q22 2 (S)

(s - 0.001 1379)(s + 0.012219)(s - 8.48425)(s + 8.47 14)(s + 20)

Case 3: 1.6 Mach; 30,000 Feet

0.941623(s + 0.000736492)(s + 0.02836)
q, 1 3 (s) =

(s + 0.029979)(s + 1.09693)(s + 20)

-207.59833(s)(s + 0.000736492)(s + 0.02836)
q 1 2 3 (s) ______________________________

(s - 0.0005956)(s + 0.02983)(s + 1. 1787 ± j14.398 1)(s + 20)

(E-5)
-5.294(s + 0.000736492)(s + 0.02836)

q213 S) =
(s + 0.034674)(s + 0.685947)(s + 20)

-1507.2923(s)(s + 0.000736492)(s + 0.02836)
q223(s) = _______________________________

(s - 0.00060805)(s + 0.033987)(s - 13.7033)(s + 12.3371)(s + 20)
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Appendix F

Nominal Transfer Functions

Introduction

Loop transmission shaping is based on using a nominal q(s) transfer function. Once

the loop transmission is shaped, the corresponding compensator element is obtained by

dividing the loop transmission by the nominal q(s) transfer function qijo(s). In this study,

nominal qij 0(s) functions are chosen which have similar frequency response magnitude

characteristics as the actual qj(s) functions over the range of flight conditions. The

nominal transfer functions are not required to have this property but are chosen in this

manner for convenience.

The transfer functions are denoted using the notation: qijk(s), where the (ij) sub-

scripts define the element of the Q matrix being referred to and the (k) subscript defines the

case or flight condition in question. The (k) subscripts are specified by:

k = 0 Nominal qij transfer function

k = I Case 1: 0.6 Mach, 30,000 feet Flight Condition

k = 2 Case 2: 0.9 Mach, 20,000 feet Flight Condition

k = 3 Case 3: 1.6 Mach, 30,000 feet Flight Condition

The qjj(s) transfer functions for the three flight conditions are given in Appendix E.

The nominal qij 0(s) transfer functions chosen are shown in Equation (F-i). A Log-

magnitude plot for each (ij) set of four qijk's is provided.

Nominal qij0(s) Transfer Functions:

0.72(s + 0.0007) -122.0(s)(s + 0.0007)
qll0(s) = q120 (s) =

(s + 0.8)(s + 20) (s - 0.0006)(s + 1 +j I1)(s + 20)

(F-i)

-4.7(s + 0.003) -158.0(s)(s + 0.001)(s + 0.02)
q2 10 (s) - q220 (s) =

(s + 1)(s + 20) (s - 0.0009)(s + 0.025)(s + 4)(s - 4.1)(s + 20)
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Appendix G

Effective Pitch Rate Loop Transfer Functions

Introduction

The improved QFT design technique (Ref 12) requires calculating an effective q

equation for the final loop (two-by-two case). Recall from Equations (V-44), (V-38), and

(V-39) of Chapter 5, the effective q transfer function, q*, is a function of the first

(acceleration) loop design and the qij elements of the Q matrix. Equations (V-44), (V-38),

and (V-39) are repeated below for convenience. In this study, q,1 * is required for the final

(pitch rate) loop design. Note the subscript (k) refers to the case or flight condition

considered as defined in Appendix F.

qjik(S)
ql lk(S)*= -(G-l)

1+
1 + 12k(S)

where:

12k(S) = g2(s)q22k(s) (G-2)

and

qt lk(S)q22k(s)
Yk(S) = (G-3)

ql2k(s)q21k(S)

The software program, TOTAL, is used to perform a series of transfer function

manipulations to derive the ql lk(s)* transfer functions. The complexity of the derivation

is reduced by simplifying the yk(s) components prior to using TOTAL as follows. First,

each qijk(s) term is rewritten in the form:

KijkNijk
qijk(S) - (G-4)Dijk

where Kijk is the transfer function constant, Nij k is the numerator root term and Dijk is the
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denominator root term. Equation (G-3) then becomes:
K1lkN1lk K22kN22k

DIlk D22k
Yk(s) - (G-5)

K12kNl2k K2lkN21k

D12k D21k

Investigating the roots of the numerator terms (see Appendix E), the following equality is

observed for all flight conditions: (s)Nllk = N22k = N12k = (s)N21k. Inserting the equality

into Equation (G-5), then y(s) becomes:
KIIkN11k K22k(s)Nllk

DIlk D22k
=(s) (G-6)

K12k(s)Nl Ik K21kNI Ik

D12k D21k

Cancelling the common numerator roots, y(s) is written as:

K1 IkK22kDl2kD2lk
Yk(S) = (G-7)

K12kK2lkDllkD22k

Having defined yk(s) as shown in Equation (G-7) greatly reduces the order of the

transfer functions manipulated in TOTAL. Prior cancellation of common roots also reduces

root solving errors resulting from the TOTAL root solution algorithms when operating on

large order transfer functions. The effective q, lk(s)* transfer functions derived for each

flight condition are given below as well as a Log-magnitude plot of the frequency response

for the transfer functions.

Effective ql lk(S)* Transfer Functions

0.691(s + 0.004936 ± jO.006363)
qlll(S)* =

(s + 0.009915)(s + 0.55 1)(s + 20)

(G-8)

1.499(s + 0.002898)(s + 3.692)(s + 4.582)(s + 47.57 ± j79)
ql2(S)* =

(s + 1.511)(s + 4.017 ±j 0.1583)(s + 39.11 ±j 63.55)(s + 20)
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0.4109(s + 0.000802)(s + 3.673)(s + 4.657)(s + 102.6 j14 1)

q,13(s)* (s + 1.094)(s + 3.928 ± jO.455 1)(s + 20)(s + 47.14)(s + 79.15)

= 0.6008(s+0.0007)(s+3.99
5 )(s+4 .0)(s+ 1 5.755±j2lI.995)(s+3 5.736)

qll)()* (s+0.801 5)(s+3.856±jO.4836)(s+1 1.9893±j 20.2778)(s+20)(s+42.02 1)

PREGJENCY RESDON5E OF C?! EFFECrr E

01

Fig. G-1. Effective q, lk(s)* Frequency Response
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Appendix H

Maximum Acceleration Loop Transmission Bounds

Introduction

This appendix describes the numerical procedure used to obtain the maximum

acceleration loop transmission bounds B20(Jco) at each design frequency, co = coi, listed in

Table V-2. These bounds are the maximum design constraints used to shape the nominal

loop transmission 120 (Jo0) on the Nichols chart. Recall from Chapter V, plant templates are

impractical to plot and use on the Nichols chart at most of the acceleration loop design

frequencies. Therefore, the procedure described in Chapter V is used to obtain point values

for Lm[B20(J0)]Ang[B 2 0(oi)] which can be plotted on the Nichols chart. An example of

the procedure is given for cti = 8. A math spreadsheet program is used to calculate the

values for Lm[B 2 0(Joi)] and Ang[B20 Jco). The procedure below is performed for all

acceleration loop design frequencies given in Table V-2. The frequency response of the

various transfer functions used below are obtained using the Computer Aided Design

program, TOTAL.

Numerical Bound Calculation Procedure

Equation (H-1) (Equation (V-29)) establishes the constraint on [1 + 12k(jo .

Ib1 l(jcO)l Iq22k0(0)l
Ii + g2 ()q22k(jow)l (H-i)

Ib21()[ lq21k(O)l

where the acceleration loop transmission is given by:

12k(jo) = g2c1o)q22k(jow) (H-2)

First, the quotient on the right side of Equation (H-I) is evaluated at a design

frequency, co = (0 i, for one of the flight conditions. The result is a Log-magnitude value

expressed in dB. Using the curved grid on the inverted Nichols chart, the magnitude curve

corresponding to the resulting quotient is located. Taking points along the curve at small
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increments, the magnitude and angle values for the bound B2(Joi) on l2k(Jo) are read from

the rectangular grid on the inverted chart. This is accomplished for all design frequencies

of Table V-2 at each flight condition k. The resulting constraint on the acceleration loop

transmission for a given flight condition is given by Equation (H-3).

12k(oa)) -> a2koj )  (H-3)

For example, at wi = 8, the constraint derived from Equation (H-i) is -5 dB for Case

1. The bound B2 1(j8) is calculated using the -5 dB curved magnitude grid of the inverted

Nichols chart. Taking points along the curve at small intervals, the Log-magnitude and

angle values are read from the rectangular 12(jo)) grid (see Table H-1, Columns 1 and 2).

Thus, the bound B2 1(j8) on 12 1(j8) is obtained for Case 1 via correspondence between [L]

and [1 + L on the Nichols chart. Columns I and 2 of Tables H-2 and H-3 give the

Log-magnitude and angle values of the bounds B22(j8) and B23(j8) for Cases 2 and 3.

Recall however, the maximum constraint over the range of flight conditions is needed

to obtain the bounds on the nominal loop transmission 1200(Jo). Using the relationship of

Equation (H-2) and the known equivalent plant q22k() (Appendix E), the constraint on

the loop transmission can be converted to a constraint on the compensator g2(j0o).

B2k(JOi)
g2k(J'i) ' - Bg2k(jOi) (H-4)

q22k(0")

The frequency response of q22 1(j8) (q22 Case 1 at (oi = 8) is given in Columns 3 and

4 of Table H-1. By dividing each B2 1(J8) Log-magnitude and angle value by Lm[q221(J8)]

Ang[q 22 1(j8)], the bound Bg21(JOi) on g2 1(j8) is found for Case 1. Since the Log-

magnitude values are expressed in dB and the angles in degrees, the quotient of Equation

(H-4) becomes a simple subtraction, i.e. Lm[Bg2k(Jcoi)] = Lm[B 2k(JOi)] - Lm[q22k(Jo)i)]

and the Ang[Bg2k(JoWi)] = Ang[B 2k(jcoi)] - Ang[q 22kCOi)]. This procedure readily lends

itself to the use of a math spreadsheet program. Columns 5 and 6 of Tables H-1, H-2 and

H-3 show the resulting Bg2k( 8 ) Log-magnitude and angle values for the three flight

conditions at the design frequency, 0 = 8.
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Next, the maximum constraint on g2(j0i) determined. By investigating the Log-

magnitude values of the three Bg2k(joj) bounds (Column 5 of Tables H-i, H-2 and H-3) at

a given angle, the maximum Log-magnitude value is selected for that angle value. This

selection process is repeated at each angle considered. The set of maximum Log-magnitude

values selected for the set of angle values is the maximum bound Bg2(Joi) on g2 (J0). For

the example at oi = 8, the Bg20(J8) values obtained are given in Columns 1 and 2 of Table

H-4.

The maximum constraint Bg20(oi) on g2(J(oi) is converted to the maximum constraint

B20(0 ) on the nominal loop transmission 120(oJ) by multiplying q22 0(Jcoi) through

Equation (H-3). In equation form:

g20(oj)q 220 (j0i) _ B20(JOi) = Bg20(JOi)q 20 J0i) (H-5)

When expressed in terms of the nominal loop transmission, Equation (H-5) becomes:

120(jo) _> B20((oi) (H-6)

The bound B20(Joi) places the greatest demand on the nominal loop transmission 120(Jo) at

a given design frequency, co = (oi. Again, obtaining B20(jc0i) from Equation (H-5) is a

point by point process involving simple addition, i.e.: Lm[B 2 0(Jcoi)] = Lm[Bg 20(J0i)] +

Lm[q 22 0(Joi)] and Ang[B 20(Jcoi)] = Ang[Bg 20(joi)] + Ang[q 220(Jcoi)]. This process is

demonstrated for toi = 8 in Table H-4 using the spreadsheet program. The Log-magnitude

and angle values of B20(Joi) (Columns 5 and 6 of Table H-4 for (oi = 8) define points to be

plotted on the rectangular grid of the Nichols chart. Connecting the points establishes the

bounds B20(Joi) for shaping the nominal loop transmission 120(jo) on the Nichols chart

(Figure V-9).

Math Spreadsheet Parameters and Results

Tables H-1, H-2 and H-3 are the calculations of the Bg2k( 8 ) bounds, where (k)

defines the flight condition: Case 1, 2 or 3. In each table, Columns 1 and 2 are the

Log-magnitude and angle values of the bound B2k(j8) read from the Nichols chart.
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Columns 5 and 6 are the resulting Log-magnitude and angle values of Bg2k(j8) found by

evaluating Equation (H-4) for each data point in columns 1 and 2.

Table H-4 is the calculation of the maximum bound B2 0(j8) on the nominal loop

transmission 120 (0o) at the design frequency, coi = 8. In Table H-4, Columns 1 and 2 list

the Bg20(08 ) Log-magnitude and angle values. Columns 3 and 4 are the Log-magnitude

and angle values of the nominal q, q220 (j8). Columns 5 and 6 are the resulting Log-

magnitude and the angle values of the maximum bound B20 (j8) found by evaluating

Equation (H-5) at "j = 8 for each data point in Columns 1 and 2.

Table H-1. Spreadsheet Calculation of Acceleration Loop Bound, Bg21 08).

(Note: All values below are for Case 1, " = 8)

Lm[B 21(j8)] Ang[B 21(j8)] Lm[q22 1(j8)] Angq 22 1(j8)] Lm[Bg21(j8)] Ang[Bg21(j8)]

-7.25 -180 -3.60 -290 -3.65 110
-7.20 -185 -3.60 105
-6.90 -190 -3.30 100
-6.60 -195 -3.00 95
-6.20 -200 -2.60 90
-5.40 -205 -1.80 85
-4.25 -210 -0.65 80
-1.50 -214 2.10 76
0.80 -210 4.40 80
2.00 -205 5.60 85
2.75 -200 6.35 90
3.25 -195 6.85 95
3.60 -190 7.20 100
3.75 -185 7.35 105
3.80 -180 7.40 110
3.75 -175 7.35 115
3.60 -170 7.20 120
3.25 -165 6.85 125
2.75 -160 6.35 130
2.00 -155 5.60 135
0.80 -150 4.40 140

-1.50 -146 2.10 144
-4.25 -150 -0.65 140
-5.40 -155 -1.80 135
-6.20 -160 -2.60 130
-6.60 -165 -3.00 125
-6.90 -170 -3.30 120
-7.20 -175 -3.60 115
-7.25 -180 -3.65 110
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Table H-2. Spreadsheet Calculation of Acceleration Loop Bound, Bg22(j 8 ).

(Note: All values below are for Case 2, wi = 8)

Lm[B22(j8)] Ang[B22(j8)] Lm[q222(j8)] Ang[q 222(j8)] Lm[Bg 2 (j8)] Ang[Bg 2 (j8)]

1.60 -360 5.20 -292 -3.60 -68
1.75 -350 -3.45 -58
2.00 -340 -3.20 -48
2.25 -330 -2.95 -38
2.70 -320 -2.50 -28
3.10 -310 -2.10 -18
3.25 -300 -1.95 -8
4.40 -290 -0.80 2
5.10 -280 -0.10 12
5.90 -270 0.70 22
6.60 -260 1.40 32
7.30 -250 2.10 42
8.00 -240 2.80 52
8.60 -230 3.40 62
9.10 -220 3.90 72
9.50 -210 4.30 82
9.80 -200 4.60 92

10.00 -190 4.80 102
10.10 -180 4.90 112
10.00 -170 4.80 122
9.80 -160 4.60 132
9.50 -150 4.30 142
9.10 -140 3.90 152
8.60 -130 3.40 162
8.00 -120 2.80 172
7.30 -110 2.10 182
6.60 -100 1.40 192
5.90 -90 0.70 202
5.10 -80 -0.10 212
4.40 -70 -0.80 222
3.25 -60 -1.95 232
3.10 -50 -2.10 242
2.70 -40 -2.50 252
2.25 -30 -2.95 262
2.00 -20 -3.20 272
1.75 -10 -3.45 282
1.60 0 -3.60 292
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Table H-3. Spreadsheet Calculation of Acceleration Loop Bound, Bg23(j 8).

(Note: All values below are for Case 3, o = 8)

Lm[B 23(j8)] Ang[B23(j8)] Lm[q223(J8)] Ang[q 223(j8)] Lm[Bg23(j8)] Ang[Bg23(j8)]

10.00 -360 7.60 -294 2.40 -66
10.10 -350 2.50 -56
10.20 -340 2.60 -46
10.25 -330 2.65 -36
10.50 -320 2.90 -26
10.80 -310 3.20 -16
11.10 -300 3.50 -6
11.40 -290 3.80 4
11.70 -280 4.10 14
12.00 -270 4.40 24
12.30 -260 4.70 34
12.75 -250 5.15 44
13.10 -240 5.50 54
13.40 -230 5.80 64
13.70 -220 6.10 74
13.90 -210 6.30 84
14.10 -200 6.50 94
14.20 -190 6.60 104
14.25 -180 6.65 114
14.20 -170 6.60 124
14.10 -160 6.50 134
13.90 -150 6.30 144
13.70 -140 6.10 154
13.40 -130 5.80 164
13.10 -120 5.50 174
12.75 -110 5.15 184
12.30 -100 4.70 194
12.00 -90 4.40 204
11.70 -80 4.10 214
11.40 -70 3.80 224
11.10 -60 3.50 234
10.80 -50 3.20 244
10.50 -40 2.90 254
10.25 -30 2.65 264
10.20 -20 2.60 274
10.10 -10 2.50 284
10.00 0 2.40 294
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Table H-4. Spreadsheet Calculation of Maximum Acceleration Loop Bound, B20(j8).

(Note: All values below are for the Nominal Case, o = 8)

Lm[Bg20(j 8 )] Ang[Bg20j8)] Lm[q 220(j8)] Ang[q 2 20(j8)] Lm[B20(j8)] Ang[B 20(j8)]

2.40 -66 -2.70 -292 -0.30 -358
2.50 -56 -0.20 -348
2.60 -46 -0.10 -338
2.65 -36 -0.05 -328
2.90 -26 0.20 -318
3.20 -16 0.50 -308
3.50 -6 0.80 -298
3.80 4 1.10 -288
4.10 14 1.40 -278
4.40 24 1.70 -268
4.70 34 2.00 -258
5.15 44 2.45 -248
5.50 54 2.80 -238
5.80 64 3.10 -228
6.10 74 3.40 -218
6.30 84 3.60 -208
6.85 95 4.15 -197
7.20 100 4.50 -192
7.35 105 4.65 -187
7.40 110 4.70 -182
7.35 115 4.65 -177
7.20 120 4.50 -172
6.85 125 4.15 -167
6.50 134 3.80 -158
6.30 144 3.60 -148
6.10 154 3.40 -138
5.80 164 3.10 -128
5.50 174 2.80 -118
5.15 184 2.45 -108
4.70 194 2.00 -98
4.40 204 1.70 -88
4.10 214 1.40 -78
3.80 224 1.10 -68
3.50 234 0.80 -58
3.20 244 0.50 -48
2.90 254 0.20 -38
2.65 264 -0.05 -28
2.60 274 -1.10 -18
2.50 284 -0.20 -8
2.40 294 -0.30 2
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Appendix J

Derivation of the MIMO System Closed-Loop Transfer Functions

Introduction

The closed-loop system transfer functions are needed to obtain the system response at

each flight condition, thus permitting verification that the control laws obtained adequately

provide system performance within the desired response specifications. The system trans-

fer functions derived below are found by applying Mason's Gain Rule to the MIMO system

of Figure V-2.

Derivations

First, the closed-loop transfer function t1 l is found for the pitch rate output y1 due to

the command input rI.Applying Mason's Rule to Figure V-2, then:

Y - f1 lglP1 l (1 + g2P22) - fllgIP 21g2PI2tlI= - = (J-l1)

r, 1 - (-g1Pll + -g2P 22 + glP 2 1g 2Pl 2) + g1P 1 g2P22

f Ig1 P II + f IgIP 1 g2P22 - f1 Ig1 P2 1g2P12
til = (J-2)

1 + g1Pll + g2P22 - g1g2P21PI2 + g1g2PIlP22

fIlg91(P I+ g2(Pl 1P22 - P21P12))
tl = (J-3)

1 + g1Pll + g2P22 + gg 2(PlIP22 -P21P12)

Let A = det[P] = PllP22 - P21P12, then from Equation (V-12);

PH = A/q22 ; P12 = -A/ql2 ; P21 = -A/q21 ; P22 = A/q22 ; (J-4)

Inserting Equation (J-4) into (J-3), tll becomes:

fl Ig1 (A/q2 2 + g2 A)
t1 = (J-5)

1 + g1A/q 22 + g2A/qlI + g1g2A

fI1g1(1/q 22 + g2)
tl = (J-6)

1/A + g1/q2 2 + g2/ql + g1g2

fjjgl(qlj + g2qllq22)
tll = (J-7)

qllq22/A + glqll + g2q22 + glg2qllq 22
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A is rewritten in terms of qij by inserting Equation (J-4) into det[P]:

A = A2/q22qII - A2/q12q21 or A = q22qIlq 12q2 1 / (q12q2 1 - q2 2q11) (J-8)

Inserting Equation (J-8) into Equation (J-7), then:

fjlgj(qj I + g2qllq22)tl= (J-9)
(q12q2 1 - q22q 1 ) + glqll + g2q22 + glg2qllq 22

q12q2l

f flgj(ql I + g2qllq22)
ti (J- 10)

1 - q22qll/ql2q2l + gjqjj + g2q2 2 + glg2qllq22

Inserting Equation (V-39) into Equation (J- 10) and regrouping terms, then:

fllglqll(1+ g2q22 )
t -l = (J- 11)

(1 + gjqlt)(1 + g2q22) - I

Note Equation (J- 11) is the same as Equation (V-37) when written in terms of the loop

transmissions 11 and 12 of Equation (V-38). The various transfer function components of

Equation (J-11) were input to TOTAL and the pitch rate responses of Chapter VI were

obtained for each flight condition. The pitch response was obtained simply by taking the

integral of the pitch rate, i.e. 0(s) = (1/s)t I (s) using TOTAL.

Second, the closed-loop transfer function t21 is found for the acceleration output Y2

due to the command input r1. Applying Mason's Rule to Figure V-2, then:

Y2 fl1 1 P21
t2= - - (J-12)

r 1  1 - (-g1Pll + -g2P22 + g1P2 1g2P1 2) + g1P 1lg 2P22

fllglP21
t21 = (J- 13)

1 + g1PI1 + g2P22 - g1g2P2 1Pl 2 + g1g2PllP22

Rewriting Equation (J-13) in terms of qij, then;

-fjj1gjl /q21)
t21 = (J-14)

1/A + g1/q22 + g2/q11 + g1g2

f IIglI(ql lq22/q2 1)
t21 = (J- 15)

qilq22/A + gjq11 + g2q22 + glg 2ql1 q22
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- f Ig (q, lq22/q21 )
t2l = (J- 16)

(1 + gjqjl)(1 + g2q22 ) -7

fjjglq12
t2l = (J-17)

1 + (1 + g1q,1 )(1 + g2q2 2)

The transfer function components of Equation (J-17) were input into TOTAL and the

acceleration response plots of Chapter VI were obtained for each flight condition.

Finally, the plant input responses were obtained using TOTAL on the following

relationships. Recall that u1 is the elevator command input and u2 is the flap command

input.

Ul= f11glrj - gly1 
= fjjgjr1 - g1t1jr1 = gl(fll -t1l)r (J-18)

or,

U1

- g1(fil-til) (J-19)

and

U2 = - g2Y2 = -g2 t 2 1rl (J-20)

or,

u2
- = -g2t21  (J-2 1)
r I

The transfer functions defined by Equations (J-19) and (J-21) were processed in TOTAL

and the commanded plant input responses of Chapter VI were obtained. Note the

closed-loop transfer functions contain very large order polynomials in the numerator and

denominator. The complexity of these transfer functions increases proportionally to the

complexity of the plant and compensator transfer functions.
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